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QUASI-HOPF ALGEBRAS

V. G. DRINFEL'D

ABSTRACT. The author introduces_ and investigates the notion of quasi-Hopf al-
gebra, obtained from that of Hopf algebra by a weakening of the coassociativity
axiom. The weakened axiom still ensures associativity of the tensor product of
representations. In the context of quasi-Hopf algebras the notions of classical
limit and of quantization are examined, the structure of certain classes of quasi-
Hof algebras are described, and the connections with conformal field theory and
knot invariants are discussed.

We recall that a Hopf algebra is a pair (4, A), where A is an associative
algebra and A a homomorphism 4 — A4 ® 4 satisfying certain conditions,
principal among which is the coassociativity of A, i.e., equality of the mappings
(A®id)oA: A > AR A® A and (Id®A)oA: A —- A AR A. The existence
of A permits the definition of the tensor product of two representations M,
and M, of the algebra 4, and the coassociativity of A implies the existence
of a natural isomorphism (M, ® M,)® M, = M, ® (M, ® M,) . If, in addition,
A is cocommutative, i.e., if A = A, where A’ is the composite of A and
the mapping 4 ® A — A ® A that switches factors, then there exists a natural
isomorphism M, ® M, o M, ® M, . The development of the quantum method
for the inverse problem [1] has led (see [2]) to the notion of quasitriangular
Hopf algebra. This is a triple (4, A, R), where (4, A) is a Hopf algebra,
ReAQ®A, Aa) = RA(a)R_l for-a € A, and the “self-consistency” relations
(3.2) are satisfied, from which follows the Yang-Baxter equation (3.4). In this
case we have as before a natural isomorphism M, ® M, — M, ® M, (in whose
definition R plays a part), while (3.2) ensures the commutativity of certain
natural diagrams (see (3.5)). In other words, the representations of 4 form
a quasitensor category. In accordance with Reshetikhin [3], it is this property
of A (together with the notion of a contragredient representation, defined by
means of the antipode S: A — A) that allows us to associate with every knot

in R an element of the center of A, generalizing the Jones polynomial [4].

It is natural to weaken the coassociativity condition on A by replacing it
with the equailty (id ® A)(A(a)) = @ - (A ® id)(A(a)) - ®~', a € 4, where
® € A® A® A must satisfy a natural self-consistency condition (see (1.2)). This
leads to the notion of quasi-Hopf algebra (§1) and the notions of quasitriangular,
triangular, and coboundary quasi-Hopf algebra (§3). Since the representations
of a quasitriangular quasi-Hopf algebra form a quasitensor category, the method
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of Reshetikhin [3] for constructing knot invariants generalizes to the quasi-Hopf
cases.

In accordance with the “philosophy” of quantum groups [2], along with Hopf
algebras (the “quantum” objects) it is useful to consider their “classical” ana-
logues: Lie bialgebras. Specification of a Lie bialgebra is equivalent to specifi-
cation of a triple (p, p,, p,), where p is a Lie algebra with an invariant scalar
product, and p,, p, C p are transversal Lagrangian subalgebras. It turns out
(see §§2, 3) that in the quasi-Hopf case the role of such triples is played by pairs
(p, p,); and in the quasitriangular quasi-Hopf case by pairs (g, ), where g isa

Lie algebra and ¢ € Sym2 g an invariant tensor. It is likely that also in the quan-
tum situation the quasi-Hopf algebras will be simpler than the Hopf, thanks to
the existence in the quasi-Hopf case of “gauge” transformations, called twists
(see §1). In any case, the quasitriangular quasi-Hopf algebras within the scope
of perturbation theory in Planck’s constant 4 admit a simple description: by
Theorem 3.15, they are in one-to-one correspondence, up to twist, with their
classical analogues (g, #), where the structural constants of g and the compo-
nents of ¢ depend on A . For lack of space, we must omit here the proof of
Theorem 3.15; but we indicate how to construct, for a given (g, ¢), a quasitri-
angular quasi-Hopf algebra A, = (A,A, d, R). Indeed, A4 is the universal

enveloping algebra, A the usual comultiplication, R = ¢"/?  and @ is defined
by means of the Knizhnik-Zamolodchikov system of equations
oW  h i .
= -W <i<
0z, ZHIJZ#;zi——zj : Isisn, (0.1

which is satisfied by the correlation functions in the Wess-Zumino-Witten model
of conformal field theory (¢ is the image of ¢ under the (i, j)th imbedding
g®g— (Ug)®"). Specifically, ® = W, 'W,, where W, and W, are solutions
of the system (0.1) in the domain z, > z, > z, having standard asymptotic
behavior for z, -z, < z, -z, and z, - z, > z, — z,, respectively (see §3
for details). This construction leads (see the end of §3) to a natural proof of
the important theorem of Kohno [5], asserting that if g is finite-dimensional
and semisimple, and p is a finite-dimensional representation of g, then the
representation of the braid group B, determined by the monodromy of the

equation

= Lk
8z, 2mi‘ie z, -z, I<i<n, (0.2)
J J

5
#i
is equivalent to the representation of B, constructed with respect to a certain

R-matrix.

It was in fact this theorem of Kohno, together with earlier results [6]-[8], that
suggested to the present author the construction of 4 o.: Dy means of (0.1). The
argument ran as follows. If we are given a representation of the quasitriangular
quasi-Hopf algebra A in a space V', then there is an action of B, in e (this
follows from the fact that the representations of 4 form a quasitensor category
C; if C were tensor, 1.e., if the commutativity isomorphism V,®V, = V,®V,,
V. € C, were involutory, then ¥®" would have an action of the permutation
group S,). Kohno’s theorem suggested that the quasitriangular quasi-Hopf
algebra 4  , (for which the definition was at that point unknown) should have
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the following properties: 1) A _, should be the universal envelope with the usual
comuliplication, but with nontr1v1al R and @, 2) if p is a representation of
- A4, inaspace I, then the corresponding representation of B, in V®”* should

be defined by the monodromy of the system (0.2). Property 2) afforded a guess
at R and ®.

Besides the results listed above, the present paper contains (see §3) a proof
of the analogues of Theorem 3.15 for triangular and coboundary quasi-Hopf
algebras, as well as an outline of the construction of a knot invariant that con-
tains all the invariants of R-matrix type (see [3] and the literature cited there)
corresponding to quasiclassical R-matrices.

The author wishes to express his thanks to I. V. Cherednik, who called his

attention to the papers [6]-[8].

§1. Definition and elementary properties of quasi-Hopf algebras

We recall that by a bialgebra over a commutative ring k& is meant an asso-
ciative k-algebra 4 with unity, provided with homomorphisms A: 4 - 4 ® 4
and ¢: 4 — k such that (¢®id)oA = (id®¢e) o A = id and satisfying the
coassociativity condition (A®id)oA = (id ®A) oA (both sides of this equality
are homomorphisms 4 — 4 ® A ® A). It is understood that A and & are
homomorphisms of an algebra with unity; i.e., A(1)=1 and g(1) =1.

By A-mod we denote the category of (left) 4-modules. If A4 is a bialgebra,
there exists, as is well known, a functor ®: (4-mod) x (A-mod) — A-mod as
follows: if M and N are modules over 4, then M @ N is M ®, N with
the A-module structure defined by the homomorphlsm A: A — A4 ® A. The
pair (4-mod, ®) is a monoidal category [9] (in general, nonsymmetric, since
the 4A-modules M® N and N® M need not be isomorphic). In this monoidal
category the associativity morphism (= associativity constraint) is trivial, and
the identity object is k with the 4-module structure defined by the homomor-
phism ¢. It turns out that this notion of bialgebra can be generalized so that the
category A-mod is still monoidal, but with nontrivial associativity morphism.

DEFINITION. By a quasibialgebra is meant a set (4, A, &, ®), where A is
an associative k-algebra with unity, A a homomorphism 4 — 4Q® 4, ¢ a
homomorphism 4 — k, and ® an invertible element of 4® 4® A4, such that

the following equalitites hold:

(id®A)A(a)) =D - (A®id)(A@) - ® ', aed, (1.1)

(id ® id ® A)(D) - (A ® id ® id)(D)
=(19®) (Id®A®id)(P) (P 1), (1.2)
(e®id)oA=id = (id®e) oA, (1.3)
(id®e®id)(®) = 1. (1.4)

If A4 is a quasibialgebra, the tensor product of 4-modules and the identity
A-module are defined in the same way as for bialgebras From (1.1) it follows
that for any A4-modules M,, M,, M, the mappmg ¢: (M, ®M)®M —
M, ® (M, ® M,), defined as the nmage of ® in End, (M, ®M ® M,), is an
A module 1somorphlsm and from (1.3) it follows that the natural mappings

— k®M and M — M ®k are also 4A-module isomorphisms. From (1.2)
and (1.4) it follows that the coherence conditions (see [9]-[11]) are satisfied;
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i.€., that the diagrams

(M, @ M,)® M;) ® M, - (M, @M,)®(M;® M) > M, ® (M, ® (M, ® M,))
l i

(M, ®(M,® M,))® M, - M, ® (M, ® M,;)®M,)

/M,®M 11:2)

2
TS, (1.6)
(M, Rk)®M, —— M, ® (k ® M,)
are commutative. Thus, the category 4A-mod is monoidal.

To make formulas like (1.1)-(1.4) more expressive, we introduce some new
notation. Let us think of A4 as an algebra of functions on a “noncommutative
space” X . An element a € A will be written as a(x), an element b€ A ® A
as b(x,y), etc.,, where x, y, etc., are points of X . If a € 4, then instead of
A(a) we write a(x *y), where * is an “operation” on X (i.e.,, a “mapping”
X x X — X). The homomorphism ¢&: 4 — k determines a point of X, which
we denote by 0; thus, instead of &(a) we write a(0). Then formulas (1.1)—(1.4)
can be rewritten as

a(x*(y*2))=D(x, y, z)al(x xy)* 2)P(x, y, z)”l , acAd, (1.7)

Dx,y,zxu)- Oxx*xy, z,u)

=®(y,z,u) Dx,y*xz,u) - dPx,y, z), (1.8)
a(0*x)=a(x)=a(xx*0), acA, (1.9)
O(x,0,z)=1. (1.10)

. REMARK. From (1.8)-(1.10) it follows that ®(0, y, z) = 1 = ®(x, y, 0)
(for example, putting x = y = 0 in (1.8), we obtain ®(0, y, z) = 1). This
is an analogue of Kelly’s theorem [11] that commutativity of (1.5) and (1.6)
implies commutativity of the diagrams
kOM)®M,— k® (M, ®M,) (M, ®M,)k —— M, ® (M, ® k)
™~
~ M, ® M;/ M, ® MQ/

Suppose given a quasibialgebra (4, A, ¢, ®) and an invertible element F €

A® A such that F(x,0)=1= F(0, y). Put

A(a) = FA(@)F ", (1.11)
O(x,y,z)=Fy, 2)F(x,y*2)®(x,y, z)
x F(x+y,z) ' Fix, )", (1.12)

where * corresponds to A (and not to A). Then (A4, A, ¢, ®) is also a quasi-
bialgebra. We say that (A4, A, e, <i>) 1s obtained from (A4, A, ¢, ®) by twisting
via the element F . Twisting via F|F, is equivalent to twisting first via F,,
then via F,.

If (4, A, ¢, ®) is obtained from (4, A, &, ®) by twisting via F, then the
corresponding monoidal categories C and C are equivalent (in a monoidal
sense). To see this, we need to construct a category equivalence f: C — C,a
natural transformation % : f(M,®M,) = f(M,)® f(M,), and an isomorphism
w: f(k) > k such that the diagrams

S(M, ®1Mz) M;) = (f(M,)) ®f(le)) R f(M;)
¢ ¢
(M, ® (M@ My)) = f(M)® ([(M,)® f(M,))
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flke M) = ke f(M) Sy
IK! / / 1
LM )..... , - SMek) = f(M)®kKk .
are commutative. It suffices to put w, f = id (if we forget the monoidal
structure, then C = C = (4-mod)), and for .7 : M M, — M ®M, take the
image of F in End, (M, ® M,).

REMARKS. 1) It might be more natural to define a quasibialgebra as a set
(A,A,e,®, [, g) where A, A, ¢, ® are as before, f and g are invertible
elements of A4, and in addition to (1.7), (1.8) the following analogues of (1.9),
(1.10) are satisfied:

a(0%x) = f(x)a(x)f(x)"", (1.13)
a(x *0) = g(x)a(x)g(x)"", (1.14)
®(x, 0, 2) = g(x)~ ' f(z). (1.15)

Then for any A-module M the images of / and g in End, M define A-
module isomorphisms M — k®M and M — M ®k, respectively, while (1.15)
ensures commutativity of the diagram (1.6). Hence A-mod is a monoidal cat-
egory. With this definition of quasibialgebra, a twist is defined by the formulas

Sf(x)=F(0, x)f(x), &(x) =F(x,0)g(x) (1.16)
together with (1.11), (1.12); it is not required that F(x, 0) =1 = F(0, x). But
the two definitions of quasibialgebra are in fact essentially equivalent. Indeed,
if A,A,¢e,®, [, g satisfy (1.7), (1.8) and (1.13)-(1.15), we can always choose
an F sothat f and g, defined by formulas (1.16), are equal to | (to see this,
we need to verify that f(0) = g(0) and for that it suffices to put x =z =0 in
(115 and x=y=z=u=0 in(1.8)).

2) Suppose A4, A, ® satisfy (1.7), (1.8), and there exist homomorphisms
€:A4— k and &: A — k such that (¢®id)oA and (id® &') oA are inner
automorphisms of 4. Then & and & are unique, & = &, and there exist
invertible elements f, g € 4 satisfying (1.13)-(1.15), with f and g unique
up to replacement by cf, cg, where ¢ € k*. Indeed, first, the equality ¢’ = ¢
and the uniqueness of ¢ are proved by consideration of the homomorphism
(e®e')oA: A— k. From (1.15) it follows that if f and g exist, then f(x) =
c®(0, 0, x) and g(x) = e®(x,0,0)"", where ¢ € k* It remains only to
show that (1.13)—(1.15) are satisfied if we put f(x) =®(0, 0, x) and g(x) =
®(x, 0, 0)‘l . To prove (1.13) and (1.14), it suffices to put, respectively, x =
y=0 and y=2z=0 1in (1.7); and to prove (1.15), toput y =z =0 in (1.8).

We shall understand by a Hopf algebra a bialgebra 4 with a bijective an-
tipode S: A — A. This differs somewhat from the conventional definition in
[12] (where bijectivity of S is not required), and is equivalent to the definition
in [2] (by Heyneman’s theorem ([13], p. 56), bijectivity of S is equivalent to
existence of a skew antipode, which then equals S—]) . We denote by C, the
category of A4-modules that are free k-modules of finite type. If 4 is a Hopf
algebra, then C, is a rigid monoidal category. Rigidity means, by definition,
that for each object M € C, there exist left- and right-dual objects. Here
by a left dual for M we mean an object N € C, together with morphisms
N®M — k and kK — M ® N such that the composites M — (M N)@M =
MIN®M)—- M and N> NO(M®N) > (N®M)® N - N are the
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identity morphisms; and then M is called a right dual for N. We note that in
any monoidal category left- and right-dual objects are unique if they exist (proof
below), and that for symmetric monoidal categories this definition of rigidity
is equivalent to that in §1 in [14]. The dual objects in C, are constructed
as follows: 1) the left-dual object "M is Hom, (M, k) with the action of 4
given by a — (p(S(a)))", where a € A and p: A — End, M defines the A-
module structure on M , while the morphisms "M ® M — k and kK - M ® "M
are defined in the natural fashion; 2) the right-dual object M~ is constructed
similarly, but with S replaced by S Eo

An attempt to define a class of quasibialgebras 4 for which the monoidal
category C, is rigid leads to the following definition.

DEFINITION. By a quasi-Hopf algebra is meant a quasibialgebra (4, A, ¢, ®)
for which there exist a, f € A and an antiautomorphism S of 4 such that

> S(b)ac; =¢e(@)a, D bBS(c,) =e(a)p (1.17)
for ac 4 and ), b, ®c, = A(a), and
> XBS(Y)aZ,=1, where ) X,QY,®Z =, (1.18)
ZS(Pj)anﬂS(Rj) =1, where ZP@Q,@R, =@~ (1.19)
J ]

ReEMARKs. 1) If S, a, B satisfy conditions (1.17)-(1.19), then for any in-
vertible u € A the same conditions are satisfied by S, @, f, where

S(a) = uS(a)u~"', a=ua, B=pu". (1.20)

2) Let ® =1, sothat (4, A, ¢) is a bialgebra. Then (1.18) and (1.19) imply
that aff = fa = 1. The transformation (1.20) therefore allows us to suppose,
without loss of generality, that @ = f# = 1; and then (1.17) becomes the ordinary
definition of antipode. Thus, for bialgebras quasi-Hopf is equivalent to Hopf.

3) If A is a quasi-Hopf algebra, then the monoidal category C, defined

above is rigid. The duals "M and M~ are defined as in the Hopf case, but
the morphisms fi: MM — k, fiik - M® M, f;: M®M" — k,
and f;:k — M" ® M are now given by the formulas f, = ¢, o (id ® p(a)),
f, = (p(B)®id)op,, f;=050(p(S” (a))®id), and f, = (id®p(S~'(8)))o0,,
where ¢,, ¢,, ¢;, ¢, are the natural mappings Hom (M, k)® M — k,
k — Hom, (M, k)®, M, etc.,, and p: A — End, M defines the A4-module
structure on M .
" 4) To every quasibialgebra (4, A, ¢, @) are connected three others: a) with-
out changing A, we can replace multiplication in 4 by the opposite operation,
and ® by o' ; b) without changing multiplication in 4, we can replace A
by A' =ooA, and ®(x, y, z) by (1>(z,y,x)—l ,where 0: A®@A - AR A
switches the factors; ¢) we can replace multiplication by the opposite operation,
A by A',and ®(x, y, z) by ®(z,y, x). If (4, A, ¢, D) is quasi-Hopf, then
the other three quasibialgebras are also quasi-Hopf: in case a) we must replace
S,a,B by S=8"', a= S B), B = S"(a); in case b) we must put
S=5"'" a=8"Ya), B=S""(B);andincasec), S=S,a=4, f=a.
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5) The property of being quasi-Hopf is preserved under a twist. Indeed, if
(A4, A, &, D) is quasi-Hopf, S, a, f satisfy (1.17)=(1.19), and A and @ are
_defined by (1.11), (1.12), then the roles of S, a, B for (4, A, &, D) are played -
by §=3S5, a—EiS Jae,, B =3, f,BS(g,), where Zid,@ei-.F“' and
i 08 =

6) In the deﬁmtlon of quasi-Hopf algebra, before the words “there exist”

should probably be inserted “locally with respect to Speck ”. We are not doing
this, because we are primarily concerned with the case that k is a field or the

ring of formal series over a field.
7) From (1.17) and (1.18) it follows that ¢oS = ¢. Indeed, applying é®¢ to
(1.17), we obtain &(S((a))a = &(a)a, and (1.18) implies that &(a) is invertible.
8) It will be shown (Proposition 1.3) that either one of conditions (1.18) and
(1.19) is superfluous. But the redundant system of axioms (1.17)-(1.19) is more
symmetric (see Remark 4).

PrOPOSITION 1.1. If two triples (S, a, B) and (S,@, B) satisfy (1.17)-
(1.19), then they are connected by a transformation (1.20), where u is uniquely
determined.

ProoF. If (S, a, B) and (S, @, B) are connected by (1.20), then
u=uy_ S(P)aQBS(R,)=>_ S(P)aQ,pS(R,),

where Y. P, ® O, ® R, = ® ' . Conversely, putting u = 3., S(P,)aQ,8S(R,),
let us prove (1.20). If a € 4, then uS(a) = S(a)u: it suffices to apply to both
sides of the equality (A ®id)(A(a)) @ ' = @' - (id ® A)(A(a)) the k-linear
mapping AR A® A — A taking b®c®d into S(b)acfS(d). Next, ua =a;
it suffices to apply to both sides of the equality

(id®id®A)(®)- (A8id@id)(®) (P ®1) (1.21)
=(1®@®d)  (Id®A®id)(P),
which is equivalent to (1.2), the k-linear mapping V: AQARAR®A — A taking
bec®d®e into S(b)achS(d)ae, and to use the fact that
ViA@a)@1®1) - T)=¢e(a@)V(T)=V({(1®1®A(a))-T)
=V(T-(1®A(a)® 1))

foracAdand Tec A® AR AR® A. That Bu = B follows from the equality
ua = @ if we replace multiplication in 4 by the opposite operation and simul-

taneously change A to A" and ®(x, y, z) to ®(z, y, x) (see Remark 4 to
the definition of quasi-Hopf algebra). Finally, we construct an inverse element

tou.Itis v=73, S(P)aQ, ﬂS(R) Indeed,
uv=§: S(P )aQﬂSR)—ZSP)anES( )
——ZS )aQ,BS(R,) =
and similarly vu=1. @

ReMARK. This proof of Proposition 1.1 results from an analysis of the fol-
lowing proof of the uniqueness of the left-dual object in a monoidal category.
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Let ‘M and "M be two left-dual objects for M . Consider the composite
Mo tMOMe™M) S ("M@ M)® "M — M and the analogous morphism

‘M — ' M (computing these morphisms for a module M over the algebra 4

of Proposition 1.1, with "M and "M corresponding to S and S, one easily
arrives at the formulas for # and v in the proof of the proposition). It remains
to prove that the two morphisms are mutual inverses and that the diagrams

*tMOM — ‘MM /k
(1.22)
\‘k‘/ Mo M _)\M‘@a‘M

are commutative. Commutativity of, say, the left-hand diagram in (1.22) fol-
lows from a consideration of the diagram

MM 'M)M - Ly (tM M) ™M)®M
e /
MR(MOM)®M) — MM MM ; (1.23)
1 \‘k/
“~
MM (M M)) = vy (MM)® (Mo M)

Observe that the derivation of the formula ua = @ (see the proof of Proposi-
tion 1.1) is obtained by analysis of (1.23) (in particular, (1.21) corresponds to
the pentagon of isomorphisms in (1.23)). Finally, the fact that the composite
*M — *M — T M is the identity follows from consideration of the diagram

MotTMMeM) S (tMM)eM'

l | | ~

Mo "MIMOM') S (MoM)OM' - M
Of course, it would be nice to prove a metatheorem that the validity of a theo-
rem of a certain type concerning monoidal categories implies the validity of an
analogous theorem concerning quasibialgebras.

It is known [12] that if (4, A) is a Hopf algebra, then the antipode S: 4 —

A is an antiautomorphism with respect not only to multiplication but also to
comultiplication. In other words, (S®S)(A'(S"(a)) = A(a) for a€ A, where
A4 — A® A is the opposite comultiplication. Now let (4, A, ¢, ®P) be a
quasi-Hopf algebra, and suppose S, a, B satisfy (1.17)-(1.19). Put Aa) =
(S®S)(A'(S™'(a))) and ® = (S® S ® S)(@**'), where @' is the image of
® under the mapping a®bQc+— c®b®a. Then (4, A, e, ®) is a quasi-
Hopf algebra, and is isomorphic to (AO, Ay € o’ 2l) , where A% is the algebra
opposite to A4 (the isomorphism A 5.4 is 8)-

PROPOSITION 1.2. (A, A, ¢, ®) is obtained from (A, A, &, ®) by a twist.

The proof below is analogous to the proof of the following assertion concern-
ing rigid monoidal categories: there exists a functorial isomorphism
("N ® M) = M ® N compatible with the associativity morphism.

PRrROOEF. Define 7,5 € A® A by the formulas

7= S(U)aV, 8 S(T)aW,, (1.24)

5=ZKjﬂS(NJ.)®L}.ﬂS(Mj), (1.25)
J



QUASI-HOPF ALGEBRAS 1427

where
S TeUeVeW=(1997) (doides)(®),
1

S K,@L,®M;®N, = A®id®id)(®) (@' ®1).

J
The meaning, for example, of the formula for y is that if M and N are
modules over A that are free k-modules of finite type, then the morphism
(‘N® 'M)® (M ® N) — k, which is easily defined in any monoidal category,
takes AQu®x®y into (LRA)(y(x®Y)). ®

LEMMA 1.
1)
y =3 S(U)aV, @ S(T;)aW,
and / / / /
0= ZKj:BS(Nj)®LjﬂS(Mj):
J
where

ST/ eU VoW =(@e - (A®id®id)(@ )

and
S KoL @M ®N, =(ideided)(® ) (189).
: J
2)Ifac A and Ala) =3, b; ®c;, then

S (S @ S)A(B)) v Ale) =¢e(a)y, (1.26)

S Ab,) 8- (S®S)(A(c) =&(a)d. (1.27)

3) IfZ,X,®Y,®ZI=q) and Eij®Qj®Rj=q)_lr then
STAX)-5-(S@SA(Y) 7 AZ)=1,  (1.28)

SS@S)A'(P)) 7 AQ))- 8- (S®S)A(R))) = 1. (1.29)
J
PrOOF. 1) Defineon A®A the structure of a right module over AQARARA

by putting (a®b)o(c®d®e® f) = S(d)ae ® S(c)bf . Then
y=(a®a)o[(1®® ") (ld®id® A)(P)].
By (1.2),
)= (a®a)o[(id@A®id)(®) - (P® 1) (A®id®id)(® ).

Since (a®a)o(a®@A(b)®c) =¢e(b)(a®a)o(a® 1®c), we have y = (a®a)o
(PR1) (ARIA® id)(d)"')] , as required. Similarly for the formula for ¢ .
2) The left-hand side of (1.26) is equal to yo [((A® A)(A(a))], which is equal

to
(a®@a)o[(l® <l>_l) - (Id® 1d ® (A)(P) - (A® A)(A(a))].
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To prove (1.26), it remains to observe that

(10d™") ([d®ideA)(P) (ARA)(A-(a)
~[([d®A@id)(id®A)A@)]-(18® ) (id®id ® A)(D)
in view of (1.1), and that
(@®a)o[(id®A®id)(id ® A)(A(a)] = e(a)(a®@a).

Similarly for (1.27).
3) The left-hand side of (1.28) is equal to ¢(r), where

r= 1018 T,U. 0V, 8W, | - (A®AQA) (D)
k k k k
k

®6
xZKj®Lj®Mj®Nj®l®leA
J

and ¢ is the k-linear mapping A®® 5 A® A such that
pab®c®de® f)
=(@a®b) - (B&B) (S(d)®S()) (a®a) (e®f).
Using the notational system (1.7)-(1.10), we obtain
r(x,y,z,u,v,w)=®u, v, w)‘lCD(z, U, v*w)
xD(x*y,zxu, v*rw)®(x*xy, z, )P(x, y, z)
" From (1.8) and (1.7) it follows that
r(x,y,z,u,v,w)=®u,v, w)—l(b(x*y, z,ux(v*w))
x®((x*xy)*xz,u, v+ w)P(x,y, z)'l
=(I>()c*y,z,(u=o=v)='sw)<b(u,v,w)"l
xd)(x,y,z)~l¢(x*(y*z),u,v*w).

Since ,
o(h- A% (a)) = e(@)h = p(A"(a) - ) (1.30)

for he A% and a € A, where AP(a2) = 1®A(@)® 1®1®1 and AY(a) =
1®1®1®Aa)®1, we have ¢(r) = ¢(s), where

s(x,y,z,u,v,w)=Pxxy, z, w)P(x, y, )
x®(u, v, w)"'d)(x, U,v*w).
From (1.8) it follows that
G, v, 2o, v, w) = O(x, p, z+w) By, z, w)P(x, y* 2z, w)
X ®(x, uxv,w)®(x, u, v)P(x*xu, v, w)_l .

From (1.30) and the analogous formula ¢(A36(a) -h) =¢(a)h = o(h ~Al4(a)) it
follows that ¢(s) = ¢(t), where t(x,y, z,u, v, w) = Oy, z, w)dP(x, u,v).
From (1.18) it follows that ¢(¢) = 1. This proves (1.28).

If (A4,A, e, D) is replaced by (4, A e, (<l>32')_l) , then y and J are re-
placed by (S™' ® S™')(») and (S™' ®S7')(d) (this follows easily from part 1
of the lemma), and § by S~ . Therefore (1.29) follows from (1.28). ®
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LEMMA 2. Suppose given a k-algebra B, a homomorphism f: A — B, an
antihomomorphism g: A — B, and elements p, o € B such that

S gb)pf(c) =e@ps— Y f(b)oglc) = e(a)o {8
i J

for ae A and ¥, b, ® ¢, = Ala), and
Zf(X,-)Ug(Y,-)Pf(Zi) =1 (1.32)

where 3. X, @Y, @ Z, = ®,
Zg(P,)pf(Q,-)ag(R,-) = (1.33)
J

where Zj_Pj ® Qj ®R; = &', In addition, suppose given 5,7 € B and an
antihomomorphism g: A — B also satisfying (1.31)-(1.33). Then there exists
exactly one invertible element F € B such that p = Fp, @ = oF ~' and
g2(a) = Fg(a)F~' for a € A. Furthermore, F =Y, g(P,)pf(Q;)08(R;) and
F™'=%,8(P)pf(Q)TE(R,).

The proof is similar to that of Proposition 1.1, which considered the case
B=A,f=id. e

Applying Lemma 2 to B = A® A, f = A, gla) = A(S(a)), p = Aa),
o =AB), gla)=(S®S)A'(a), P=7,and =7, we obtain an invertible
element F € A ® A such that

FA(S(a))F~' = (S®S)(A'(a)), (1.34)
y=F-Ala). (1.35)

In fact,
F = Z(S® S)(A'(P))-7-AQ;BS(R,)), (1.36)

e ZA(S(Pi)aQ,.) 6-(S®S)(A'(R)).

From (1.34) it follows that A(a) = FA(a)F =!It remains to prove the equality
(1.12). This can be written in the form

(S®S®S) (@) (Fel) (A®id)(F) (1.37)
=(1®F)-(id®A)(F)-®. ‘
From (1.36) and (1.34) it follows that

(FR1) - (AQId)(F)=(F®1): > (AS®S)(A'(P)) - (A®id)(y)

x (A®id)(A(Q;BS(R,)))
=5 (S®S®S) (A ®id)(A'(P))- (F®1)

x (A@id)(y) - (A®id)(A(Q,BS(R)))).
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Therefore

(S®S®S)@) (Fol) (A®id)(y)
=Y (SeS®S)(idoA)A(P)S &S e Ss)@?)

!

x(Fl)-(A®id)(y) - (A®id)(A(Q,BS(R,)))).
Transforming similarly the right-hand side of (1.37), we reduce the proof of
(1.37) to verification of the equality
(S®Se8) (@) (Fol) (Acid)(y) =(1®F) - (id®A)(y)-®. (1.38)
From (1.24), (1.34), (1.35) it follows that
(Fol)-(A®id)(y) =Y F-AS(U)) Ale)-AV,) ® S(T,)aW,

=2 _(S®)(A(U))S(W) ® S(T)))a®a)(V,® W)
iJj
X A(V,) ® S(T;)aW,.
Hence the left-hand side of (1.38) is equal to ¢(r), where ¢ is the k-linear
mapping A%% — 4®* taking a®b®c®d®e® f into S(c)ad®S(b)ae®S(a)af
and

r= (Zl@?}@Uj@V;.@VI’j@l)

J
XY (T,@AU)RAV)QW,) (@19 11),

or, in the other notation
r(x,y,z,u,v,w)
=P(z, u,v)d'd)(y, Z,Ux*v)
XO(yxz,u*xv, w)_’d)(x,y*z, (uxv)*xw)P(x, y, z).

Similarly the right-hand side of (1.38) is equal to ¢(s), where

s(x,y,z,u,v,w) =0y, v, w) D(x,y,vrw) Dz, u, vrw)"
XPx*y,z,ux(v*xw))Pu, v, w).

Since (p((1®1®A(a)® 1@ 1)h) = ¢e(a)p(h) for ac A and h € A®®, to prove
(1.38) it suffices to show that r = §, where
S(x,y,z,u,v,w)
= Oy, (zxu)+v,w) ' B(x,y, (z+u)*v) *w)
x(D(z*u,v,w)_l(b(z,u,v*'w)—'(b(x*y,z,u*(v*w))d)(u,'u,w).

The equality r = § can be deduced from Mac Lane’s theorem [10] that the
commutativity of (1.5) implies the commutativity of any diagram consisting of
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associativity morphisms. But here is a direct proof:

r(x,y,z,u,v,w)=<l)(z,u,v)_ld)(y,.z,u*v)clt’(y*z,u*v,w)_|

T x(D(y,z,(u*v)*w)_'d)(}c,y,z*((u*v)*w))
x®(x*y, z, (U*xv)*w)
=(I>(z,u,'u)*l(I)(y,z*(u*v),w)—ltib(z,u*v,w)_l
x B(x,y, z+(uxv)*w))P(x*y, z, (U*xv)*w)
=<I>(z,u,v)—'<l>(y,z:n:(u*fu),w)_l
><d>()c,y,(z*(u=«'u))4=7.u)<l>(z,u=n='u,w)_l
XxD(x*y, z, (U*xv)*w)
=@y, (z+u)+v, w) ' Dx,y, (z+u)*v)*w)
x<I>(z,u,v)*1<l>(z,u*v,w)-l(l>(x*y,z,(u*v)*w)
=<D(y,(z*u)*v,w)—lfb(x,y,((z*u)*v)*w)
xd>(z*u,v,w)—'¢(z,u,v*w)—'®(u,v,w)
XxDP(x*xy,z, (Uxv)*w)
=§(x,y,z,u,v,w). ®

Propositions 1.3-1.5 below will be used to prove Theorem 1.6, which asserts
that a deformation of a quasi-Hopf algebra as a quasibialgebra is quasi-Hopf.

PRrOPOSITION 1.3. Let (A, A, &, ®) be a quasibialgebra, and suppose given
an antiautomorphism S of A and elements a, p € A that satisfy (1.17). Then
the lefi-hand sides of (1.18) and (1.19) belong to the center of A; and if one of

them is equal to 1, so is the other.

ProOF (cf. the proof of Proposition 1.1). Put g = Y., X;BS(Y))aZ, and
i = ZJ.S(P].)anﬂS(Rj), where we have ) X, ® Y, ® Z, = ® and Zj P ®
Q,® R, =®"'. Applying to both sides of the equality (A® id)(A(a)) - @' =
® '(id ® A)(A(a)), a € A, the k-linear mapping A A® A — 4 taking
bocod into S(b)acBS(d), we find that A is central. Applying to the equality
®-(A®id)(A(a)) = (1d®A)(A(a)) P we find that g is central. Applyingto (1.21)
the mapping b®c®d®e — S(b)acfS(d)ae, we find that ag = ha . From this
and the centrality of g and 4 it follows that fg = fh for f € AaA . Putting
f=g and f=h, we find that g2=gh=h2. Therefore g=1<h=1. ®

ProposITION 1.4. Let (A, A, &, ®) be a quasibialgebra. Suppose there exist
antiautomorphisms S, S of A and elements @, B € A such that: 1) ifae A
and A(a) = ¥, b,®c;, then 3, S(b)ac, = e(a)a and 3, b,8S(c;) = e(a)B; 2)
the element u =3, S(P,)aQ,BS(R,) is invertible, where 3, P.®Q;®R, = o',
Then (A, A, &, ®) is a quasi-Hopf algebra.

PROOF. Arguing as in the proof of Proposition 1.1, we find that uS(a) =
S(a)u for a € A, and therefore S(a)u™' = u"'S(a). Put a = u”'@. Then
>, S(P)aQBS(R) = 13 while if a € 4 and A(a) = ), b, ® ¢;, then
> S(b))ac; = ¢(@)a. Thus, S, a, p satisfy (1.17) and (1.19), and so also
(1.18) (see Proposition 1.3). @
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ProOPOSITION 1.5. Let (A, A, e, ®) be a quasi-Hopf algebra, and suppose
S, a, B satisfy (1.17)-(1.19). Define w,w € A® A by the formulas w =
>, S(P)aQ;®R, and b =3, Y,S™ (B)S™(X,)®Z;, where 3 P,@Q @R =
&' and 2, X;®Y,®Z, =®. Denote by J, and J, the left and right ideals of
A ® A spanned by A(Kere). Then: 1) the k-linear mappings ¢, p: AQ A —
ARA given by p(a®b) = (a®1)wA(b) and ¢(a®b) = A(b)w(a®1) are bijective,
2a) the mapping a®b — (id®e)(¢p~ ' (a®b)) induces a bijection (A®RA)/J, — A4;
2b) (id®e)(p~ ' (a®b)) = aBfS(b); 3a) the mapping a®b — (id®e)(¢ ™' (a®b))
induces a bijection (A®A)/J, — A; 3b) (id®e)(¢ ' (a®b)) = S~ (6)S ™ (a)a.

ProoF. Parts 2a) and 3a) follow from 1); while 1), 2b) and 3b) are easily
derived from the formulas

(S®id)¢S™' ®id)p = id, (1.39)
(S @id)p(S®id)g = id. (1.40)

(1.40) follows from (1.39), since if the multiplication in A4 is replaced by the

opposite operation, then S is replaced by S™' and @ by ¢ (see Remark 4 to
the definition of quasi-Hopf algebra). What remains is to prove (1.39). It is
easily verified that ((S® id);b(S‘l ®1d))(u) = ((Id®A)(u) - P)o (S ® 1), where
ue A®A and o means the following (4® 4® A)-module structure on 4AQ A4 :
(a®b®c)o(d®e) =adS(b)® ce. Therefore

(S®id)¢(S™' ®id)p(a ® b)
=((@a®1®1) ([d®A)(w) (id®A)AD)) - D)o (f& 1)
=((a®1®1) - (ide®A)(w) P-(A®id)(A(b))) o (B® 1)
=((@a®1®1) - (1deA)(w) - P)o(fb)
=@ael)v-(1®b),

where v = ((id®A)(w)-®)o(f®1). We have v = y((id®id®A)(®™')-(10d)),
where y: AQARAR®A— A® A takes c®d®e® f into S(c)adfS(e)® f.
Since

(id®id®A)(¢_l)‘(l®<D)=(A®id®id)((b)~(<l>_'®l)-(id®A®id)(®—'),
it follows that v=1. e

THEOREM 1.6. Let A be a quasialgebra over k that is flat as a k-module,
and I a nilpotent ideal in k. Suppose A/IA is a quasi-Hopf algebra over k/I .
Then A is a quasi-Hopf algebra over k .

PrROOF. Put B = A/IA. The antiautomorphism of B that figures in the
definition of quasi-Hopf algebra will be denoted by S, ; and similarly for the
notation ay, BB € B . Define Wy, Wy, € B® B as in Proposition 1.5, and lift
Wy, Wy to v, € A® A. Then the k-linear mappings v, 7: A® A — AR A
given by y(a®b) = (a® 1)vA(b), w(a®b) = A(b)i(a® 1) are bijective. This
1s a consequence of Proposition 1.5 and the following lemma.

LEMMA. Let f: M — N be a morphism of flat k-modules that induces an
isomorphism f: MJ/IM — N/IN. Then f is bijective.
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Proor. That f is surjective is obvious. Since N is flat, we have (Ker f)/1-
(Ker f) = Ker f = 0; and therefore Ker f =0. ®

The mapping a®b — (id®a)(l//_’(a®b)) induces a bijection g: (4®A4)/J, —-
A, where J, has the same meaning as in Proposition 1.5. Using g, carry over to
A the (A®A)-module structure that is present on (4 ®A)/J, . Since the element
a®l € A®A actson A as left multiplication by a, the element 1®b € A® A
actson A as right multiplication by S(b) , where .S is some antihomomorphism
A — A. Since S(mod/A4) = Sy (see part 2b) of Proposition 1.5), it follows
from the lemma that .S is bijective. Put 8 = g(1). Then 2. b,BS(c;) =¢(a)B
for a € 4 and Y, b, ® ¢c; = A(a); while from part 2b) of Proposition 1.5 it
follows that # (mod/A4) = By

Similarly, using the bijectivity of ¥, we construct an antiautomorphism
0: 4 — A and an element y € 4 such that ¢ (mod/A4) = S;' , Y(mod/7A4) =
S;[(aB) ,and -, 0(c;)yb; = ¢(a)y for ac 4 and ¥, b;®c,=A(a). Put S =
o~',@=35(y). Then S(mod/4) =S,, a(mod/d) = a,, and ¥, S(b)ac, =
¢(a)a for a€ 4 and 35,5, ®c; = Aa). Put u =3, 5(P)aQ,pS(R,), where -
2.iP,®0.®R, = ® ' Since u=1 (mod 74), the element u is invertible. It
remains to apply Proposition 1.4. @

§2. Quasi-Lie bialgebras

In this section we assume, for simplicity, that k is a field of characteristic 0.

We recall (see §3 of [2]) that a Lie bialgebra over k is a Lie k-algebra g
provided with a I-cocycle d: g — g ® g that defines the structure of a Lie
coalgebra on g. This means that J(g) C /\2 g and there the co-Jacobi identity
Alt(d ®1d)o = 0 is satisfied, where Alt: gRg®g — g®g®g is the alternation.
The term “l-cocycle” means that J is linear over k and &([x, y]) = [x®1+
1®x,0(¥)]-ly®1+1®y, dx)].

A Lie bialgebra is the classical analogue of a Hopf algebra. To explain (in
part) what this means, we make some definitions. By a Hopf QUE-algebra over
k[[#]] we mean a topological Hopf algebra A4 over k[[A]] such that: 1) the
Hopf algebra A/hA is a universal enveloping algebra; 2) as a topological k[[A]]-
module, A4 is isomorphic to V[[k]] for some vector space V' over k (a base of
neighborhoods of zero in V[[A]] isgiven by A" V[[A]], n € N). Let us note that:
a) QUE is an abbreviation for “quantized universal enveloping”; b) in [2], Hopf
QUE-algebras are called simply QUE-algebras; c) the term “topological Hopf
algebra” means, in particular, that the comultiplication A maps 4 into the
completion A®A of the tensor product; d) since chark = 0, the Lie algebra g
over k such that 4/h4 = Ug is unique: g={a € A4/hA|A(a) =a® ] + 1 ®a}.
It turns out [2] that if 4 is a Hopf QUE-algebra with 4/h4 = Ug, then g
has a Lie bialgebra structure: the cocommutator 6: g — g® g is given by
o(x) = h—l(A(a) — A'(a)) mod h, where a is an inverse image of x in 4 and
A': 4 — A®A is the opposite comultiplication. The Lie bialgebra (g, §) is
called the classical limit of 4, and A4 the quantization of (g, d).

We describe now the classical analogues of quasi-Hopf algebras.

DEFINITION. By a quasi-Lie bialgebra is meant a triple (g, d, ¢), where 8

is a Lie algebra, é a l-cocycle g—»/\zgc g®g, and (pe/\3gCg®g®g,
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with the following equalities satisfied:
JAIt(d ® 1d)d(x) : 2.1)
=xRNIVTF1I®¥x1+101®x, ¢], X€g, '
Alt(d ® id® id)(p) = 0. (2:2)
Let us note that in defining the operator Alt: g®" — g®" we do not include

the factor (n!)'l .
REMARKs. 1) Quasi-Lie and Lie bialgebras are not bialgebras in the sense of

§1.
2) For any l-cocycle d: g — /\2 g the mapping Alto (d®id)od: g — /\3 g 1is
also a 1-cocycle. (2.1) says that %Alt o(d®id)od is the coboundary of ¢ .

3) Let ¢; be a basis for g, [e,, e]= cf‘jek ,» 0(e;) = f,.jkej ® e ,and ¢ =
;o”ke,. ®e; ® ¢ (here and below, summation is implied for repeated indices).
Then the axioms for a quasi-Lie bialgebra mean that

k k ik j 1k jik ik j
ci==Cp S ==fl, ¢H=_p*=_gp¥, (2.3)
/ k pij ] ja

Alt Cte =0, . f/= AlLAlt I (2.4)
Al (1 1TF =0 g™y =10, Aty o™ =10, (2.5)

ij. kT m I

Let (g, d, ¢) be a quasi-Lie bialgebra, and suppose r € /\2 g. Put

S(x)=0(x)+[x®1+1®x, ], (2.6)
=9+ A6 Q@id)r — (r, r), (2.7)

where (r,r) = [r'z, r”] + [r'z, r23] + [r13 , r23] is the left-hand side of the
classical Yang-Baxter equation (see §4 of [2]). Then it is easily verified that
(g, 0, P) is also a quasi-Lie bialgebra. We shall say that (g, §, @) is obtained
from (g, &, ¢) by twisting via r. Twisting via r, +r, is equivalent to twisting
first via r,, then via r, ..

DEFINITION. By a quasi-Hopf QUE-algebra over k[[4]] is meant a topologi-
cal quasi-Hopf algebra (4, A, ¢, ®) over k[[A]] such that: 1) & = 1 mod h;
2) the Hopf algebra A4/hA is a universal enveloping algebra; 3) as a topologi-
cal k[[A]]-module, A4 is isomorphic to V[[A]] for some vector space V over
k;4) Alt® = 0 mod h’. Twisting for quasi-Hopf QUE-algebras is defined by
formulas (1.11), (1.12), where F =1 mod 4 and (¢®id)(F) = (d®e)(F)=1.

It is easily seen that the condition Alt® = 0 mod 4° is preserved under a
twist.

PROPOSITION 2.1. Let (A,A, e, ®) be a quasi-Hopf QUE-algebra, with
A/hA =Ug. Then:

1) By an appropriate twist, we can make ® = 1 mod h’.

2) If ®=1mod h? | then putting ¢ = h™* Alt® mod h and defining 6: g —
g ® g in the same way as in the case that A is a Hopf QUE-algebra, we obtain
a quasi-Lie bialgebra structure on g.

3) If (4,4, ¢, ®) is obtained from (A, A, &, ®) by twisting via F, and
® = & = | mod 4%, then the quasi-Lie bialgebra (g, d, ¢) corresponding to
(A, A, &, d) is obtained from (g, &, p) by twisting via r = —h~"Alt F mod & .
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To prove Proposition 2.1, we shall need some facts concerning
ogy H" of the complex

. d d d d

05 k3SUg2Ug@Ug3UgUgeUg > -+, (2.5
where d"=d,?—d,:+~-+(—l)"+'d:“, d;(a ®--®a,)=a0  -Qa,_,®
Aa)®a,,,® - ®a, for 1<i<n,and dy(x)=18x, d"+'(x)=x®l. We
observe that H" is also the cohomology of the complex

d.
0 - BY% LA B B B (2.8a)

where B” Kers n- ﬂKers si(a ®--®a,) =¢&a)a,®  -Qa,_ | ®
a;,,® - ®a, (this follows from the fact that the k-modules (ug)® form a
cosxmphmal k module, in which the d, ' are the boundary operators and the s
the degeneracy operators). Since d, (g @n ) = 0, we have a mapping " — H"
We denote its restriction to A" g by u.

PROPOSITION 2.2. 1) u is an isomorphism.
2) Alt: (Ug)®" — (Ug)®" maps cocycles into \" g, and coboundaries into 0.

This gives rise, therefore, to a mapping H" - \"g, equal to n!;fl ;
OUTLINE OF THE PROOF. The only nontrivial part is the surjectivity of u.
Since Ug is isomorphic as a coalgebra (see [15], Chapter II, §1, Proposition 9)

to the symmetric algebra Sym”g with the usual comultiplication, the proof of
surjectivity reduces to the analogous assertion concerning the complex

0—+k—»Sym'g—»Sym‘g@Sym‘g—»»-- , (2.9)

which is well known (in essence, this is the basic lemma in the theory of for-
mal groups over a ring of characteristic 0). It can be proved, for example, by
observing that the mth homogeneous component of the complex (2.9) (with
respect to the grading induced by the usual grading in Sym®g) is isomorphic
to g®'”® Ker(C*(I"™) — C*(8I™)), where S, is the symmetric group; / is
an mterval regarded as a snmphcxal set (see [16], Chapter I, §2.5); aI™ is the
boundary of the cube I™; and C” denotes the cochain complex of a simplicial

set. @
PROOF OF ProprosITION 2.1. Part 1) follows from Proposition 2.2. Let us

prove 2). From Proposmon 2.2 it follows that ¢ € /\ g c Ug®Ug® Ug

We show that d(g) C /\ g, so that J is well defined as a mapping g — /\ 8.

The formula J(x) = h~'(A(a) — A'(a)) mod h , where a is an inverse image of
x in A, defines § as a mapping Ug — /\Z(Ug). Since ® = 1 mod hz, A is
coassociative mod A% . Therefore (A®id)d(x) = (Id®J)A(x) +0,,(d®id)A(x),
x € Ug, where g,, switches the second and third factors in Ug® Ug® Ug.
In particular, if x € g, then (A®id)d(x) = 1 @ d(x) + 0,5(d(x) ® 1); 1.e

5(x) € g@Ug. Thus, 8(g) C (8Ug)NA*(Ug) = A’ g. If now x, y € Ug, then
d(xy) = o(x)A(y) +A(X)5(y) , whence d([x, y]) = [A(x), d(¥)] - (A(y), 6(x)].
Therefore J: g — /\ g is a 1-cocycle. Equality (2.1) follows from the equality

lAlt(é ® 1d)6( ] = h“zAlt((A® id)A(a) — (id ® A)A(a)) mod s, where a € 4
and @ is the image of a in Ug. Finally, to prove (2.2), it suffices to alternate
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with respect to x, y, z, u the equality (that follows from (1.8))

w(x,y,zxu)+y(x*y, z,u)
=y, z,u)+ylx,y*z, u)+y(x,y, 2),

where y = h’z(d) — 1) mod h* and X,y,z,u,* have the same meaning as
in (1.8).

We now prove 3). Let v = h_'(F — 1), and U be the residue class of
v mod h. Then r = —AltT. Since ® = ® mod 4%, we have

v(y,z)+v(x,y*xz)-v(x*y,z)-v(x,y)=0 mod A, (2.10)

1.e., U is a 2-cocycle of the complex (2.8). Hence from Proposition 2.2 it follows
that r e /\2 g. Equality (2.6) is readily verified. Using (2.10), we find that

~

D(x,y,2)-P(x,y, 2)
 =h{v(r, D) +o(x, yxz) - v(xxy, 2) —v(x, y)}
+h2{v(y, z)v(x,y*z)—v(x,y)v(x*y, z)} mod h,
so that
g(x,y,2)-p(x,y, 2)
= %X,'A;l’tz{h—l X[v(x,y*z)—v(x, zxy)]
—h_'[v(x*y,z)—v(y*x,z)]}modh
+ x{\yl,tz{ﬁ(y , Z)U(x,y*z)—0(x, y)U(x*y, z)}.

From this it is easy to arrive at (2.7). @
In the situation of Proposition 2.1, we shall call (g, §, ¢) the classical limit

of (4,A,¢e,®),and (4, A, e, ®) the quantization of (g, d, ¢).

Let us review now the one-to-one correspondence between Lie bialgebras
and Manin triples [2]. For simplicity we restrict ourselves first to the finite-
dimensional case. By a Manin triple is meant a set (p, p,, p,), where p is
a metrized Lie algebra (i.e., a Lie algebra on which a nondegenerate invariant
symmetric bilinear form is given), and p,, p, C p are isotropic Lie subalgebras
such that p = p, @ p,. In this situation p, and p, are Lagrangian subspaces
of p (i.e, pil =p,), and p, is canonically isomorphic to p;. If (p, P> p,) is
a Manin triple, and J: p, — p, ® p, is the mapping dual to the commutator
mapping p, ® p, — p,, then (p,, d) is a Lie bialgebra. Conversely, if (g, J)
is a Lie bialgebra, put p=g®g", p, =g, p, =g", endow p with the natural
scalar product, and take 6" : g" ® g° — g~ as the commutator in g*. Then
[x, /] can be uniquely defined for x €g, [ €g” so that p is a Lie algebra and
the scalar product in p is invariant. If e, is a basis in g, ¢’ the dual basis in

g, fe;, ej] — cll.‘jek and d(e,) = fi’kej ®e* , then the e, and e¢' form a basis
in p, and
: J P
(e;,€)=6], (e,e)=0, (¢',€)=0, (2.11)
[, 1= f’e", (2.12)
le,, &1 = e, +cle'. (2.13)
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Now suppose p and p, have the same meaning as above, and p, C p is a
Lagrangian subspace (but not, in general, a subalgebra) such that p =p ®p,.
The commutator p, ® p, — p = p, @ p, has two components: p, ® p, — p,
and p,®p, = p,. The first defines, as before, a mappmg 0: PP Py the
second an element ¥ € p, ®p, ®p,. Put ¢ = —y . It is easily verified that:
1) (p,,d, ¢) is a quasi-Lie bialgebra; 2) the correspondence so constructed
between triples (p, p,, p,) of this form and quasi-Lie bialgebras is one-to-one;
3) changing p, , for fixed p and p,, is equivalent to twisting the corresponding
quasi-Lie bialgebra; 4) in the quasi-Lie case, (2.11) and (2.13) remain in force,
while (2.12) is replaced by the formula

(@)= £l —pe, (2.14)

where f;’ and 9'/" have the same meanings as in (2.3)—(2.5). Since a La-
grangian subspace always has a Lagrangian complement, specifying a quasi-Lie
bialgebra up to a twist is equivalent to specifying a Manin pair, i.e., a pair
(p, g), where p is a metrized Lie algebra and g a Lagrangian subalgebra.

Up to now all Lie algebras have been assumed to be finite-dimensional. If
dim g = oo, it is natural to regard g" as a topological vector space in which a
neighborhood base for zero is formed by the W™ where W C g runs through
the finite-dimensional subspaces. The space g~ is linearly compact (i.e., g
is the projective limit of finite-dimensional discrete spaces), and g® g~ is lo-
cally linearly compact (i.e., has a linearly compact open subspace). It is easily
shown that if p is assumed locally linearly compact, p, discrete, and p, open,
while the nondegeneracy of the scalar product in p is understood in the topo-
logical sense (p — p° is a topological isomorphism), then the above assertions
concerning the connection between quasi-Lie (resp. Lie) bialgebras and Manin
pairs (resp. triples) remain valid in the infinite-dimensional case.

ExXAMPLE. Let X be a compact connected Riemann surface, E the field of
meromorphic functions on X, and A4 the adéle ring of E. Consider a fixed
absolutely simple finite-dimensional Lie algebra g over £ and a meromorphic
differential w on X, w #0. Put p = g®, 4. Regard g and p as algebras over
C, and define the scalar product (4, v) =3 _ res {@w Trp(u)p(v,)} in p,
where u,v € p=g®; 4, p:g — gl(n, E) is a faithful representation, and
u_ is the x-component of u. Then (p, g) is a Manin pair. As explained in §4
of [2], it is impossible to enlarge this pair to a Manin triple if the genus of X
is greater than 1 (this is connected with the fact that Manin triples of the type
in question correspond to nondegenerate solutions of the classical Yang-Baxter
equation).

The class of Manin pairs obtained in this fashion can be extended somewhat
by observing that if (p, g) is a Manin pair, and ¢ an open subalgebra in p such
that ¢ D ¢*, then putting p’ = ¢/c*, g = ((gNc)+¢-)/c", we obtain again a
Manin pair. In the example above we can put, e.g., ¢ = (§®, Ag) x L , where L

is an open Lagrangian subalgebra in g® A° (here SC X, S#0, A% is the
ring of ade¢les without S-components, and A = AX/S). Then p' =g ®f Ag

g ~ gnec. Of course, we must still take care of the existence of L. For this
it suffices that § > §, U S,, where S, is the set of zeros and poles of ),

and S, the set of branch points of the smallest extension E' > E for which
the algebra g ®, E' splits. Indeed, in this case there exists an isomorphism
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f:8 ®p Y a®c y where a is a finite-dimensional 51mple Lie algebra over
C, and we can put L = (a ®c o’ ), where 0° c A% is the ring of mtegral

adeles.
It would be desirable to study the questlon of quantxzatlon of the quasi- L1e

bialgebras corresponding to Manin pairs of the above type. This class of quasi-
Lie bialgebras contains, in particular (see [2], §§3, 4), algebras a[u] (where a is
a simple Lie algebra over C, dima < oco) with a Lie bialgebra structure defined
by rational solutions of the classical Yang-Baxter equation, and also affine Lie
algebras with a Lie bialgebra structure defined by trigonometric solutions. For
these bialgebras the quantization is known (see [2], §6).
§3. Quasitriangular, triangular, and coboundary
quasi-Hopf algebras

We recall here the definitions of quasitriangular, triangular, and coboundary
Hopf algebras given in §10 of [2]. In all three cases we are concerned with a
pair (4, R), where A is a Hopf algebra and R an invertible element of 4® 4

such that |

A'(a) = RA(@)R™', a€cA, (3.1
where A’ is the opposite comultiplication. In addition, R must have certain
supplementary properties: in the quasitriangular case, it must satisfy the equal-
ities
(A®id)(R) = R®R?®,  (id®A)(R)=R"R"; (3.2)
in the trlangular case, together with (3.2) it must satisfy the ‘unitary condition”
R*' = R™'; and in the coboundary case, the equalities R =R, (e®e)(R) =
1 and

R'?.(A®id)(R) = R” - (id® A)(R) . (3.3)

Here we have used the following system of notation: if R =} . a,®b,, then
=Y.a,8b®l, RP°=Y,4,®10b, R*°=Y,1®4a,8b,,and R =

Z b, ® a,. The terms “triangular” and “quasitriangular” are explained by the
fact that m the quasitriangular case R satisfies (see below) the Yang-Baxter

quantum equation

RZR1PRY = RBRVRY (3.4)
also called the quantum triangle equation. The term “coboundary” is motivated
by consideration of the classical limit (see [2], §§4, 10).

What can be said about the monoidal category 4-mod for these types of
Hopf algebras 4? If M and N are modules over 4, then (3.1) allows us
to define an A-module isomorphism ¢ = N M®N S N® M, natural in
M and N: namely, ¢, v = 6oR, ,, where R, , is the image of R in
End, (M ®N), while 0: MQN 5 N®M is the usual k-module isomorphism.
If R* = R™', then ¢ is involutory, i.e., ¢y , 0y » =id. If (3.2) holds, we
have commutative diagrams

(M, @M,) @M, = M;®(M M, =~=(M;QM)M,

|2 T (3.5a)
M, ® (M, ® M,) SMQM,M,) ~(M QM;)QM,
M, ® (M, ® M;) S (MMM, =M,®(M;®M))

K (IR (3.5b)
(M, @ M,)®M; = (M,@M)®M; =M,®(M &M,
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where ~ and = denote respectively the morphisms of associativity and of
commutativity for c¢. If (3.3) holds, we have commutative diagrams of the

form
MMM, SM®M M, Z‘M;@(MZ@M,)'
) [ (3.6)

M@ M,M,) = (M,@M)®M, = (M, M,)QM,.
If (¢e®¢)(R)=1, then ¢, , =1id. Finally, if (3.4) holds, we have the commu-
tative diagram

M@ MRM;) S MMM, ~(MM)OM, = (M;®M,)®M,
R N

(M, ® M,) ® M M, ® (M, ® M,)
i 1 (3.7)
(M, ® M) ® M, M, ® (M, ® M,)
I

|2
M,® (M, @M;) S M,®(My®M,) =(M@M)M, = (M;®M,)e M,

Thus, if (4, R) is a triangular Hopf algebra, then the diagrams (3.5) are com-
mutative and c¢ is involutory; i.e., 4-mod is a symmetric monoidal category [9],
or, in the terminology of [14], a tensor category (we note that if ¢ is involu-
tory, then commutativity of (3.5a) is equivalent to that of (3.5b); and similarly,
if R”' = R™", then the left-hand equality in (3.2) is equivalent to the right).
A monoidal category together with a not necessarily involutory commutativity
morphism such that (3.5a) and (3.5b) are commutative is called a quasitensor
category. To this class belong the categories of modules over quasitriangular
Hopf algebras. Finally, if (4, R) is a coboundary of Hopf algebra, then ¢ is
involutory, ¢, , = id, and the diagrams of the form (3.6) are commutative.

Such categories are called coboundary.
Let us make use now of the notational system of (1.7)-(1.10). Equality (3.1)

translates into
a(y*x) = R(x, p)a(x*y)R(x,y)”', aeA. (3.8)
DEFINITION. By a quasitriangular quasi-Hopf algebra is meant a set
(A,A,e,®P, R), where (A, A, ¢, D) is a quasi-Hopf algebra, while R is an
invertible element of 4 ® 4 satisfying (3.8) and the equalities

R(x*y,z)=®(z,x, y)R(x, z)®P(x, z, y)_| (3.9a)
X R(y, z)®(x, y, z),
_ -1
R(x,y*z)=®(y, z,x)  R(x, 2)®(y, x, 2) (3.9b)

x R(x, y)®(x,y, z) =

Coboundary quasi-Hopf algebras are defined in the same way, but with (3.9a)
and (3.9b) replaced by

R(x,Y)R(x*y, z)=®(z,y, x)R(y, z)R(x,y* z)®(x,y,z) (3.10)
together with the relations R(y, x) = R(x, y)—l , R(0, 0) = 1. A quasitrian-

gular quasi-Hopf algebra is called triangular if R(y, x) = R(x, y)_l . For all
three cases, a twist is deﬁned by formulas (1.11), (1.12) and

R(x,y)=F(y, x)R(x, »)F(x, )", (3.11)
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where F is an invertible element of 4 ® 4 such that F(x,0)=1= F(0, y).

It is easily verified that the category of modules over a quasitriangular (resp.
triangular, coboundary) quasi-Hopf algebra is a quasitensor (resp. tensor, co-
‘boundary)-category if the commutativity morphism is defined in the same way
as for the Hopf case. It is easily verified also that the twist is well defined
(i.e., that (4, A, e, ®, R) satisfies the same asioms as (4, A, ¢, ®, R)) and
that the equivalence constructed in §1 between the monoidal categories C and
C corresponding to (4, A, &, ®) and (4,4, ¢, ®) are compatible with the
commutativity morphisms.

REMARKS. 1) If R(y, x) = R(x, y)” ', then (3.9a) is equivalent to (3.9b).

2) For all three types of quasi-Hopf algebras, R(x,0) = 1 = R(0, y). To
see this, it suffices in the quasitriangular case to put y = 0 in (3.9), and in
the coboundary case to put y = 0 in (3.10) and use the equality R(0, 0)
= 1. Analogous proofs show that in quasitensor and coboundary categories
the diagrams of the form

/ M\ / M\
koM S5 Mk koM < Mk

are commutative (the quasitensor case is considered in Theorem 8 of [11]).

3)If (4, A, e, @, R) is a quasitriangular quasi-Hopf algebra, then we have
equality (3.10), as well as the equality

R(x,y)®(z, x, Y)R(x, 2)®(x, z, ) R(y, 2)®(x, y, 2) -

=®(z,y, )R, 2)®(y, z,x)” R(x, 2)®(y, X, 2)R(x, y),

generalizing (3.4) (in particular, a triangular quasi-Hopf algebra is coboundary).
To prove (3.12), it suffices, using (3.9a), to write the left-hand side of (3.12) as
R(x, y)R(x*y, z), the right as R(y *x, z)R(x, y), and apply (3.8). Equality
(3.10) follows directly from (3.9) and (3.12).

4) The preceding remark has a category analogue: in a quasitensor category

diagrams (3.6) and (3.7) are commutative.
For the rest of this section, it is assumed that k is a field of characteristic O.

DEFINITION. By a quasitriangular quasi-Hopf QUE-algebra over k[[A]] is
meantaset (4, A, &, @, R), where (4, A, ¢, D) is a quasi-Hopf QUE-algebra
(see §2), while R € A®A satisfies (3.8) and (3.9) and is congruent to 1 mod /4 .

Similar definitions are made for triangular and boundary quasi-Hopf QUE-
algebras. The definition of twist in the QUE-case includes, of course the condi-
tion F = 1 mod 4. We note that the congruence Alt® = 0 mod h* that enters
into the definition of quasi-Hopf QUE-algebra follows (assuming that ® = 1|
mod 2, R = 1 mod h) from the equalities (3.9) that enter into the definition
of quasitriangularity. We note also that in the definition of coboundary quasi-
Hopf QUE-algebra the condition R(0, 0) = 1 need not be included, since it
follows from the equality R(O, O)2 = |, which in turn follows from the condi-

tion R(y, x) = R(x,y)”"
ProprosITION 3.1. Let (A, A, ¢, D, R) be a quasitriangular quasi-Hopf

QUE-algebra over k[[h]]), and let A/hA = Ug. Put t = h YRR - 1)

mod h € Ug® Ug. Then:
1) t is a symmetric g-invariant element of g ® g, and remains unchanged

under a twist of (A, A, e, P, R).
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2) By an appropriate twist of (A, A, e, ®, R) we can make
“Y(R = 1) mod h t/2 and ® = 1 mod h*; and under these conditions
h‘zAncb mod 4 = [t'?, 1*’)/4 and A' = A mod W R

PrOOF. 1) That ¢t is symmetric is obvious. From (3.9b) it follows that
R(z,x+y)" =®(z,x, )R(z, x)"'0(x, z, y)""

x R(z,y) '®(x,y, z).
From (3.9a) and (3.13) it follows that {(x*y, z) = t(x, z) + t(y, z); ie., t €
g® Ug. Thus, t € Sym’g C g®g. From (3.1) it follows that [R*' R, A(a)] = 0
for a € A. This implies g-invariance of ¢.

2) First we make ® = 1 mod A’ (see Proposition 2.1). Then from (3.9)
it follows that r € g® g, where r = h"(R — 1) mod /. Next, twisting via
an element F € A®A such that F = 1 + h(r — er)/2 mod h’> we can make

“YR-1)mod h = t/2 and still have ® = 1 mod A*. With these conditions
(3.12) allows us to find h™2Alt® mod 4, and from (3.1) it follows that A" = A

mod h>. e
In the situation of Proposition 3.1 we shall call (g, ¢) the classical limit of

(A,A,¢,®P,R),and (4, A, ¢, ®, R) the quantizationof (g, ). If (4, A, ¢,
®, R) is a triangular quasi-Hopf QUE-algebra, then ¢ = 0, so that the classical
limit of (4, A, ¢, ®, R) can naturally be said to be g (without additional

structure).

PROPOSITION 3.2. Let (A,A, e, ®, R) be a coboundary quasi-Hopf QUE-
algebra over k[[h]], and A/hA = Ug. Then after a suitable twist, R = 1
mod > and ® = 1 mod h*>. With these conditions, A' = Amod h®, while
1) &y 2Altd mod h is a g-invariant element of /‘\3 g C ( Ug)@’3 independent
of the arbitrariness in the choice of the twist.

PROOF First we make ® = 1 mod A> (see Proposition 2.1). We then put
r=h ' (R-1)mod h € Ug® Ug and observe that, by (3.10), r is a 2-cocycle
of the complex (2.8). Smce R¥ =R! , we have rZ' = —r, and by part 2) of
Proposition 2 2, re /\ g. Twisting now via an F € A®A such that F = | +
hr/2 mod h*, we can make R = 1 mod h* and still have ® = 1 mod h%. With
these conditions satisfied, tat R and ® defined by formulas (3.11) and (1.12);
the congruences R = 1 mod h* and ® = 1 mod A’ mean that 4~'(F — 1)
mod A 1s symmetric and is a 2-cocycle of the complex (2 8a). By Proposition
2.2, ™Y (F - 1) mod 4 is a coboundary; ie., F = F,-(u~ 'ou~ I A(u), where
ue A, F, 6A®A, u=1 modh,and F=1mod h*. If F=(u"'®u™' )A(u)
then ®=(u'@u '@u” ) Q- (uQueu)=dmod A ; and if F =1 mod A,
then Altd = Alt® mod n’ . Thus, ¢ 1s independent of the arbitrariness in the
choice of the twist. If R =1 mod A* and ® = 1 mod A2 , then A" = A mod h*
in view of (3.1), so that in the quasi-Lie bialgebra (g, , ¢) that is the classical
limit of (4, A, ¢, ®) the cocommutator J is equal to 0. Hence by (2.1) ¢ is

g-invariant. ®

In the situation of Proposition 3.2 we shall call (g, ¢) the classical limit
of (A4,A,e,®,R),and (4, A, e, P, R) the quantization of (g, ¢). In the
triangular case, i.e., the case of equalities (3.9), we have ¢ =0.

(3.13)
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By the classical limit of a quasitriangular (resp. triangular, coboundary) Hopf
QUE-algebra (4, R) is meant the pair (g, r), where g is the classical limit
of 4 (see §2) and r = =h! (R—1)mod h. It is easily seen that (g, r) is a
quasxtnangular (resp. triangular, coboundary) Lie bialgebra in the sense of §4
of [2]; i.e., g is a Lie bialgebra, r € g® g, the cocommutator d: g — g® g is
the coboundary of r, and, in addition, for the quasitriangular case (r, r) =0,

for the coboundary case r € /\ , and for the triangular case (r,r) = 0 and
r e /\ g. Here (r,r) = [r'?2, r”] - [r P+ [r13 1. Itis easily shown

that if (g, r) is the classical limit of a quasitriangular (resp. coboundary) Hopf
QUE-algebra (4, R), then the classical limit of (4, R) as a quasitriangular
(resp. coboundary) quasi-Hopf QUE-algebra is (g, r + r ) (resp. (g, (r,r))).

REMARK. The “classical” objects considered here have natural interpretations
in terms of Manin triples and pairs. For simplicity we restrict ourselves to the
finite-dimensional case. Let g be a Lie bialgebra, and (p, p,, p,) the corre-
sponding Manin triple; ie., p = g® g, P, =98, p, = g . To an element
r € g®g we associate the graph a of the mapping g* — g that takes / € g°
into (id ® /)(r). This gives a bijection g® g — {subspaces a C p such that
p = p,+a}. Itis easily shown that (g, r) is a quasitriangular (resp. coboundary,
triangular) Lie bialgebra if and only if a is an ideal (resp. (adp,) is an invari-
ant Lagrangian subspace, Lagrangian ideal). Consider now sets (p, g, a), where
(p, g) 1s a Manin pair, and a a subspace of p such that p = g® a and one
of the following three conditions holds: 1) a is an ideal; 2) a is a Lagrangian
subspace and [g, a] C a; 3) a is a Lagrangian ideal. It is easily verified that: in
case 1), specifying (p, g, a) is equivalent to specifying a pair (g, f), where ¢ is
a g-invariant element of Syng; in case 2), specifying (p, g, a) is equivalent
to specifying a pair (g, ¢), where ¢ is a g-invariant element of /\3 g; in case
3), specifying (p, g, a) is equivalent to specifying g (without additional struc-
ture). Here ¢ corresponds to the restriction to a~ g~ of the scalar product in
p,and ¢ to the restriction to a~ g~ of the trilinear form ([x, z], y).

If (g, r) is a quasitriangular Lie bialgebra, then (g, (r—rZ')/Z) 1s a2 cobound-
ary Lie bialgebra. Let us consider now the quantum analogue of this construc-
tion. Let (4, A, e, ®) be a quasi-Hopf QUE-algebra over k[[A]]; suppose
Re A®A, R=1mod h, and (3.1) holds. Put R = R - (R*'R)™"% . Then

R = R, (R- R’ )—1/2 (RZI .R)-l/z _ RY _(R_Rzl)—l .

i.e., R satisfies the “unitary condition”. Since (3.1) implies that [RZ'R A(a)] =
0 for a € A, R also satisfies (3.1). The passage from R to R we call unita-
rization. Umtanzanon commutes with the twist (3.11).

PropPosITION 3.3. If R satisfies (3.10), so does R.
Proor. It suffices to show that
R(x,y)R(x+y,z)=R(x,y)R(xxy, z)
x {R(y, X)R(z, y * X)R(x, »)R(x*y, 2)} "%, (3.14a)

R=1;

R(y,z)R(x,yxz)=R(y, z)R(x, y * )
x {R(z, y)R(z*y, x)R(y, z)R(x, y+2)} " "*. (3.14b)
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Let us prove, e.g., (3.14a). Since [a(x *y), R(y, x)R(x,y)] =0 for a€ 4,
we have
Rix, y)Re+ys z)=Rix;y) - (R, x)R(x, y)”"
XR(xx*xy,z)-(R(z, x*y)R(xxy, z))
= R(x, Y)R(x*y, z)
x{R(y, X)R(x, »)R(z, x +y)R(x +y, 2)} /2
= R(x,y)R(x*y, z)
X {R(y, X)R(z,y*x)R(x, y)R(x *y, z)}
From Proposition 3.3 it follows that the unitarization (4, A, ¢, ®, R) of a
quasitriangular quasi-Hopf QUE-algebra (4, A, ¢, ®, R) is coboundary. It is

not, in general, triangular. Indeed, if (g, #) is the classical limit of (4, A, ¢,
®, R), then from part 2) of Proposition 2.1 it follows that the classical limit of

(A,A,e,®D,R) is (g, [t'%, 12°)/4). Hence if [¢'%, 1] # 0, then (4, A, ¢,
®, R) is not triangular. In particular, this is the case for the unitarization of
the quasitriangular Hopf QUE-algebra U,g (see [2], §86, 13), where g is a
finite-dimensional simple Lie algebra.

ProrosiTION 3.4. If (A,A, e, P, R) is a coboundary quasi-Hopf QUE-
algebra, then (3.12) implies (3.9).

Proor. It suffices to use the following lemma, which applies not just to the
QUE-case.

LEMMA. Let u(x,y, z) = {right-hand side of(3.9a)}“1 x {left-hand side of
(3.9a)}, and v(x,y, z) = {right-hand side of (3.12)} " x {left-hand side of
(3.12)}. Then v =u">.

=

12 4

ProOOF. Since

R(x*y, z)=®(z, x, y)R(x, 2)®(x, z, y)~"
X Ry, z)®(x,y, z)u(x,y, z), R(x, y * z)

=R(y*z,x)”
=uly,z,x) ' ®y,z,x)" R(x, z)
x Oy, x, 2)R(x, »)®(x,y, 2)”,
equality (3.10) can be rewritten as
u(x,y,z)=b(z, x, by, z, x)uly, z, x)" " b(x, y, ),

where
b(x,y,2)=®(y,z,x) -R(x, 2)By, x, 2)R(x, y).
Iterating, we obtain
u(x,y,z)=b(z, x,p)b(y, z, x)b(x,y, 2)ulx,y, 2)"";
i.e., wW=v'. e
A simpler proof of Proposition 3.4 can be given by reducing it to the case
R =1 with the help of part 1) of the following proposition.
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PROPOSITION 3.5. 1) Any quasitriangular or coboundary quasi-Hopf QUE-
algebra can by a suitable twist be brought into a symmetric form, i.e., such that
R*' = R. In the coboundary case, R} =R&R=1.

2) Twisting via F preserves the symmetric form of a quasitriangular or co-
boundary quasi-Hopf QUE-algebra if and only if F 2 _F.

3) Let (A, A, e, ®, R) be a quasitriangular or coboundary quasi-Hopf QUE-
algebra, with R* = R. Then A = A, and ® satisfies the relation

O(z,y,x)=D(x,py,2) . (3.15)

PrOOF. The quation R* = R, where R = F*'RF™', can be rewritten

as R*'R = (F_'FZ'R)z. Its general solution is therefore of the form F =

F,-(R-(R*R)™"*)"? where F}' =F,. Let us now prove 3). From (3.1) it

follows that [R*'R, A(a)] = 0 for a € A. Since R*' = R, we have [R, A(a)]
=0;so0by (3.1, A'=A. Now rewrite (3.10) as

®d(x,y,z)={R(y, 2)R(x,y*z)} '®(z,y,x)  R(x,»)R(x*y, z).

Iterating this relation and using the equalities R(y, x) = R(x, y), A=A, we
find that

D(x,y, z) ={R(y, 2)R(x, y * 2)} ®(x, v, 2){R(x, y)R(x *y, 2)}".
Hence
O(x, y, 2){R(x, YR(x xy, Y ®(x,,2)”' = (R, DR(x, y* 2)}",
and therefore
®(x,y, z)R(x, y)R(x*xy, z2)P(x, y, 2)"' =R, 2)R(x, y* z).

From this last equality and (3.10) we obtain (3.15).

REMARK. Equality (3.15) could have been proved in a different way by ob-
serving that in the coboundary case it follows immediately from (3.10), since
R = 1, while the quasitriangular case reduces to the coboundary by means of
Proposition 3.3. Conversely, one can prove Proposition 3.3 by reducing it, using
part 1) of Proposition 3.5, to the special case R* = R and observing that in

this case it reduces to (3.15).
We shall now construct bijections between the isomorphism classes of trian-

gular, quasitriangular, and coboundary quasi-Hopf QUE-algebras, up to twist,
and the isomorphism classes of the corresponding classical objects. The author
does not know whether there exist natural bijections of this type for quasi-Hopf
QUE-algebras that fail to satisfy (3.1), or for Hopf QUE-algebras (including
triangular, quasitriangular, and coboundary).

PROPOSITION 3.6. Any triangular quasi-Hopf QUE-algebra over k([[h]] can
by a suitable twist be brought into the form R=1,®=1.

ProOF. We can suppose (see Proposition 3.5) that R = | from the very
first, and therefore ®(z,y,x) = ®(x,y, z)_l. We show that if ® = 1
mod A", then there exists an F € A®A such that F =1 mod 4", (¢®id)(F) =
(id@e)(F)=1, ®=1mod A", and R = 1, where ® and R are defined by
the formulas (1.12) and (3.11). The equality R = 1 is equivalent with F being
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symmetric, while the congruence ® = 1 mod 4"*' means that the cobound-
ary of the element A~ "(F — 1) mod h € B? (see (2.8a)) is equal to o, where
a=h"(1-® modhe€ B’. It remains to prove that « is the coboundary
of a symmetric element of B®. From (1.2) it follows that « is a cocycle, and,
from (3.9), (3.15), and the equality R = 1, that o belongs to the kernel of
Alt: (U g)®3 (U g)®3. Hence by Proposition 2.2, a is the coboundary of
some f € Btc Ug® Ug. By (3.15), the coboundary of the element /3 € B
is also equal to a. Therefore replacing B8 by (B + ,32‘)/2 we arrive at the
desired equality ﬂ =p. @

A triangular quasi-Hopf QUE-algebra such that R = 1 and ® = 1 is the
same thing as a cocommutative Hopf QUE-algebra.

PROPOSITION 3.7. A cocommutative Hopf QUE-algebra has the form Ug,
where g is a Lie algebra over k[[h]] that is isomorphic as a k[[h]]-module

to V[[h]] for some vector space V over k.

The condition on g in Proposition 3.7 means that g is a deformation of
the Lie algebra g, over k, where g, = g/hg. Such algebras g will be called
deformation algebras For deformation algebras g we mean by Ug not the
algebraic universal envelope, but its /-adic completion.

PrOOF. Let A be a cocommutative Hopf QUE-algebra, 4/h4 = Ug,, and
¢: A — A the composite of the comultiplication A: 4 — AQA. We have

o(I) c I, where I = Ker(4 = k[[h]]) . The operator ¢ mod 4 acts as multipli-
cation by 2" on the image of the canonical mapping Sym” gy — I/hI Cc Ug,.
Therefore [ is the topological direct sum of g-invariant k[[A]}- submodules
W,,n=1,2,...,such that ¢ — 2" -id acts in W, topologically nilpotently.
Put also W), = k[[h]]- 1 C A. Then 4 = W, &I, and (oiwo = 1d. From the
cocommutativity of A it follows that ¢ is a coalgebra homomorphism. There-
fore A(W,) C (Wy,@ W)@ (W, @ W,);ie.,if ac W, then A(a) =b®1+1®b
for some b€ W, . In fact, b = (¢®id)(A(a)) = a;ie, Ala)=a®1+1®a.
Conversely, if A(a) =a®1l+1Q®a, then ¢(a) = 2a, so that a € W, . Thus,

={a€ AlA(a) =a®1+1 ®a} and therefore W, is a Lie algebra. Smce W,
is a direct summand of A, it is a deformation algebra, and the natural homo-
morphism UW, — A is bijective, since its reduction mod h 1is bijective. @

PrOPOSITION 3.8. Let A = Ug, where g is a deformation algebra over k[[h]].
Regard A as being a triangular quasi-Hopf QUE-algebra by defining A and ¢
in the usual fashion and putting R = 1, ® = 1. Suppose (A,A, e, ®, R) is

~

obtained from (4,4, ¢, P, R) by a twist via F. Then the equaltttes Ri=
1, ®d =1 are equivalent to F being representable in the form

F=weuwAw) ™', wucA, u=1 modh, eu)=1. (3.16)

If there exists a u satisfying (3.16), it is unique up to replacement by ue,
v € g. If (3.16) holds, then Adu maps g isomorphically onto g = {a € A|

Ala)=a®1+1Qa}.

ProOF. We show thatif R=1,®=1,and F =1 mod A", then there exists
awe A suchthat w=1mod A", e(w)=1,and (w '@w™") - F-A(w) =1
mod A"*' (the rest is obvious). Indeed, the element A~"(F — 1) € B’ (see
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(2.8a)) 1s symmetric and is a cocycle. By Proposition 2.2 it is the cobound-
ary of some y € B'. It remains to choose w so that e(w) =1 and w =
t+#4"ymodh™' . e B

Two triangular quasi-Hopf QUE-algebras (A,A,e,®,R) and (4,A, ¢
D, R) are called equivalent if the set (4, A, g, D, R) 1s isomorphic to the set
(A, A, e, d, R) obtained from (A,A, e, ®, R) by a twist. Propositions 3.6—
3.8 show that the equivalence classes of triangular quasi-Hopf QUE-algebras
are in one-to-one correspondence with the isomorphism classes of deformation
algebras g. Let us note, however, that a triangular quasi-Hopf QUE-algebra
corresponds, strictly speaking, not to a Lie algebra g, but to a class of such
algebras, where the isomorphism between two algebras g and g is defined not
canonically, but up to automorphisms of the form exp(4-adv), v e€g.

We describe now the category C of triangular quasi-Hopf QUE-algebras over
k[[h]]. By a morphism (4,A, e, ®, R) — (A, A, &, ®, R) we understand an
algebra homomorphism f: 4 — A such that

of =(/®f)oA, Eof=¢, P=(fRfR)P), R=(f®/f)(R)
(if we liked, we could have extended the class of morphisms to include twists).
If g is a deformation algebra, F € Ug® Ug, F = 1 mod 4, and (¢ ® id)(F)
= (id®¢)(F) =1, we denote by A F the triangular quasi- HOpf QUE-algebra
obtained by twisting via F from the algebra Ug with the trivial triangular

quasi-Hopf QUE-algebra structure. From Propositions 3.6 and 3.7 it follows
that every object C is isomorphic to an object of the form A, p, so that what

remains is to describe the morphisms A4 W A- F-

PRoOPOSITION 3.9. Let A be a homomorphism g — g, u € Ug, e(u) =
u=1modh,and F = (u®u)- (AR 1)(F) vA(u)_l , where 1. is the extension
of A to a homomorphism Ug — Ug, while A: Ug — Ug® Ug is the standard
(untwisted) comultiplication. Then the mapping (Adu) o i: Ug — Ug is a
morphism Ay r— A5 F. and all morphisms Ay gt Ag 7 are so obtained.

Two pairs (). u) and (A, , U,) determine the same morphzsm Ay p— Az 57 Uf
and only if A, =exp(—h-adv)ol and u, = ue” Y for some v €73.

ProoOF. We show that to any morphism f: A - A_ F corresponds some
pair (A, u) (the rest is obv1ous) Indeed, f is also a morphlsm A, e

where F = (f®f )(F ) . This means in particular that we have the equalmes
® =1 and R=1 in the trlangular quasi-Hopf QUE-algebra Az p . It follows

therefore from Proposition 3.8 that F = (u ® u) ‘A(u)_l for some u € Ug
such that &(#) = 1 and u = 1 mod 4. Furthermore, Adu is an isomorphism

A; = Az p,sothat (Adu)”' f isa morphism A, — Az e, (Adu)”'f =

A for some homomorphism A: g — §. Since (f® f)(F_l) "F=F=we®u)-
A(u)™' and f=(Adu)od wehave F = (u®u) A A)(F)Au)™"'. o
REMARK. A4 is a Hopf QUE-algebra if and only if F(x, y)F(x*y, z) =
F(y, z)F(x, y*z). This equation (with F replaced by F—l) is studied in
[17].
We pass now to coboundary quasi-Hopf QUE-algebras. In contrast to the
above triangular case, there arises here the existence problem for the quantization

of the pair (g, ¢), where g is a Lie algebra over k and ¢ € /‘\39 Cg®g®g
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is a g-invariant tensor. Fortunately, the problem has a positive solution. To be
specific, take (Ug)[[#]] for A, define A and & in the usual fashion, and put
R = 1. It remains to construct a g-invariant element ® € (Ug® Ug® Ug)[[h]]

~satisfying (1.8), (1.10), (3.15) and the congruences ® = 1 mod B, Altd = hZ(o"

mod A° .
ProOPOSITION 3.10. Such a ® exists.

Before proving Proposition 3.10, let us observe that the complex (2.8) has an

involution o taking a, ® ---®a, € (Ug)®" into (-1)""*"?a ®-..®a,. The
subcomplex (2.8a) is mapped into itself by o . Consider the complex

B i g G i@ o (3.17)

where C" = {x € B"|o(x) = —x}, with B" having the same meaning as in
(2.8a).

PrOPOSITION 3.11. 1) The nth cohomology space of the complex (3.17) is
equal to O for evern n, and isomorphic to \"g for odd n (the isomorphism
being induced by the natural imbedding \" g — C").

2) If a g-invariant element of C" is a coboundary, it is the coboundary of a
g-invariant element of ¢k,

PROOF. On the cohomology H" of the complex (2.8a) (i.e.,on A" g), o acts
as multiplication by (—1)" (indeed, the sign of the permutation
(n,n—1,...,1) is (=1)""" D2 = ("™ D/2_1)"y  This implies part 1)
of the proposition. To prove part 2), it suffices to show that the differen-
tial d: C"' — D", where D" C C" is the subspace of coboundaries, has

a g-equivariant section D" — C"~'. The complex (2.8a) is canonically iso-
morphic (see the proof of Proposition 2.2) to the direct sum of the complexes
g™ R cam,er", m=0,1,2,...,where I" is the simplicial m-cube

and C  denotes the normalized cochain complex with coefficients in Q (nor-
malization means that the cochains are 0 on degenerate simplices). The in-
volution o comes from involutions 7, of the complexes C (I, 91™) (t,)
is induced by the automorphism of the “geometric” cube [0, 1]” that takes
(xy5...,x,)into (I-x,,...,1=x,)). Denote by K, the 7, -anti-invariant
part of the complex C (I™,dI™), by K the nth term of K, , and by
D! c K, the subspace of coboundaries. The differential d: K,',',"' — D) hasan
S, -equivariant section s”: D" — K"~'. Thesections s, m=n,n+1, ...,
induce the desired section D" — C"'. e

ProofF oF ProrosiTION 3.10. Suppose already constructed a g-invariant

P, € (Ug®Ug®Ug)[[A4]] such that ®, = 1 mod hz, At® = hz(p mod 4’ and
@, satisfies modulo 4" the equations (1.8), (1.10), (3.15) (for ®,, oreven @,
one can take 1+ h’p/6. Then ®,(x,y,00=1=d,(0,y, z)ymod h" (see
the remark after formulas (1.7)—(1.10)). It is easy to construct a g-invariant

! | n / i / _— / —
®, such that & =@ modr", ®,(0,y,2) =P, (x,0,z)=D (x,y,0) =
I mod A"*', and @/ (z,y,x) = @ (x,y,z)" ' mod A" (it suffices to put
<D; — e’ , where L is obtained from In ®, € (Ug® Ug® Ug)[[h]] by deleting
the terms containing 4"). The element d); satisfies (1.8) modulo 4", but not,
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in general, modulo h"*' . Define a g-invariant element u € (U g)®4 from the
relation
<D;-(-x—-,--y; Z* u)4>:l(x-* Y5z i)
=® (v, z, ) (x,y+2z, u) (3.18a)
I n n+1
x® (x,y,z)+h ux,y,z,u) modh .

We now try to find @, ,, in the form @ +A4"y, v € (Ug)®’. The element y
must be g-invariant and satisfy the equations

W(X,O,Z):—O, '/’(Z,y,x)z—'//(X,y,Z),
W(y’ Z,u)—W(x*yyZ,u)‘}'W(X,)’*Z»u)_W(X,y,Z*“)+W(X,y,z)
=ux,y,z,u).

Proposition 3.11 shows that such a y exists, provided u is a g-anti-invariant
cocycle of the complex (2.8a). We show that this is indeed the case. The

equalities x(0,y,z,u) =pu(x,0,z,u)=pu(x,y,0,u)=u(x,y,z,0)=0
and u(u,z,y,x) = —-u(x,y, z,u) are easily verified. It remains to prove

that u is a cocycle, i.e., that

ux,y,z,u)+ulx,y,zxu,v)+ulx*y, z,u,v) (3.19)
=u(y,z,u,v)+ux,y*xz,u,v)+u(x,y, z, uxv). '

For this we use, along with (3.18a), the congruences (3.18b)-(3.18f) obtained
from (3.18a) by replacing x, y, z,u by x,y, z+u, v incaseb), x+y, z, u,
v incasec), y, z,u,v incased), x, yxz, u,v incasee),and x, y, z, uxv
in case f). We now compute the products

(@, (x,y*z, )P (x,y, 2)}
X (@ (x+y*z,u,v) O (x+y,z,usv) '@ (z,u,v)}
x {® (x,, Z*u*v)_'d):,(y, z*u,v)d);(x,y*z*u,v)}

><<I>:,(y, Z. i)

(3.20)

{CD;(x,y*z, u)CD;(x*y*z, u, v)"}
X {CD:I(x,y, z)d);(x*y, Z, u*v)“'d);(x,y, z*u*v)_l} (3.21)
X {® (z, u, V)@, (y, zxu, V)P (v, z, u)} '
xcb;(x,y*z*u,v).

Rewriting the curly brackets in (3.20) by using (3.18a), (3.18c), (3.18b), and
the curly brackets in (3.21) by using (3.18e), (3.18f), (3.18d), we find that

(3.20)=1-A"(u(x,y, z, u) + u(x, y, z+u, v)
+u(x*y,z,u,v)) mod nt!

and
(B21)=1-h"(uy, z, u, v)+plx,y*z, u,v)
+u(x,y,z,u*v)) mod A",
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On the other hand, the equalities
O (x,y,2)® (x*xy*z,u,v) =D (x*y*z,u,v)® (x,y,2),

(3.18g)

@ (z,u, V) (x,y, z+urv) =D (x,p, z+uxv)® (2, u,v),
(3.18h)

(I):,(y, Zs u)d);(x,y*z*u, v) =¢;(x,y*z*u,v)¢;(y, Z' W
(3.181)

which follow from the g-invariance of CD; , show that (3.20) = (3.21). This
implies (3.19).

A 8

D A

Let us observe that the derivation of (3.19) can be pictured graphically by

considering the boundary L, of the complex K, constructed by Stasheff in

[18]. L is the sphere S? divided into rectangular and pentagonal faces. The

stereographic projection of this subdivision is indicated in the figure (the face

1” contains the point at infinity). The vertices 4, B, ..., N correspond to the

14 ways of arranging parentheses in a product of five factors x,y, z, u,v;
namely,

A= (x((yz)u))v,

B =x(((yz)up),  C=x((y(zu))v),
= (x(y(zu)))v, E
H

(x(yz))u)v, F = x((yz)(uv)),
G = x(y(zu)v)), ((xy)(zw))v,  I=(x(yz))(uv),
J = x(y(z(uv))), K = (xy)((zu)v), L= (((xy)z)u)v,
M = ((xy)z)(uv), N = (xy)(z(uv)).

Two vertices are joined by an edge if the corresponding parenthesis arrange-
ments are obtained one from the other by a single application of the associative
law. To each oriented edge we assign an element of the group G,/G,,,, where

G, is the set {a € (Ug® Ug® Ug)[[A]lla = 1 mod hk} under the operation
of multiplication. The rule for this assignment is indicated by the following
example: the edge AE corresponds to the associativity relation x((yz)u) =
(x(yz))u, where 4 corresponds to the “right” arrangement x((yz)u) and E to
the “left” arrangement (x(yz))u; accordingly, we assign the element
<D;(x , y*z,u) to the edge AE, and the element <I>'n(x, y*z, u)"| to the edge
E A . Relations (3.18a)-(3.181) show that for each of the faces “a”, “b”,... ,“i”
the product of the elements of G,/G, , corresponding to the edges of the
face taken all in the same direction belongs to the subgroup G,/G, +1» Which
is contained in the center of G,/G,,,. We call this product a residual. By

If

il
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(3.18g)—(3.18i), the residuals corresponding to rectangular faces are equal to |.
Therefore the product of the residuals corresponding to the pentagonal faces
(running, say, clockwise over all of them) is also equal to I, and this is equiva-
lent to (3.19). ‘ '

Let us take fixed sections s:,, m=4,5,... (see the end of the proof of
Proposition 3.11). Then the proof of Proposition 3.10 presents a completely
specific @, expressed in terms of hzq; by means of a “universal formula”,
which for short we shall write in the form ® =& (hzq)) . The words “universal
formula” mean that if we write @ in the form

oo
iy sy s s Ty e K,
Z /P € s e D€ ,...,¢€ Qe s s € >
m,n,p=0
where the e; are a basis in g and the tensors q,, , , are symmetric in each

of the groups of indices i, j, k, then the Ay p,p AN be expressed in terms

of the structural constants C. of the algebra g and the components Y

of the tensor y = h2¢ in accordance with the rules of acyclic tensor calcu-
lus with coefficients in Q, while the relations between the tensors a,, , .,
equivalent to (1.8), (1.10), and (3.15), follow in accordance with the rules of

. : k ko rl R

acyclic tensor calculus from the relations ¢;; = —¢;, €;;Cp, +CjCip + 6, Cjp = 0,
ok ik S S e . o i

p = -y =y e wk +cfs¢//”k+cfs w'* = 0. Acyclicity (meaning, for

example, exclusion of the expression cficfjc,'k , where i, j, k form a “cycle”)
ensures meaningfulness for the formula & in the infinite-dimensional case and
in the case that k is not a field and the k-module g is nonfree. We note that
& () is of the form 1+ y/6 +o(y), where o(y) denotes terms in powers of

y greater than 1.

PROPOSITION 3.12. Suppose given a g-invariant ® € (Ug ® Ug ® Ug)[[4]]
satisfying (1.8), (1.10), (3.15) and the congruences ® = 1 mod h, Alt® = hZ(o
mod h’, ¢ € /‘\3 g. Then there exists a g-invariant symmetric F €
(Ug® Ug)[[h]] such that F =1mod h, (¢®id)(F) = 1= (1d®¢)(F), and ®,
as defined by formula (1.12), is equal to &(y), where y is a g-invariant ele-
ment of (/\3 8)[[h]] congruent to hqu mod k> . Here y is defined uniquely, and
F is defined up to multiplication by an element of the form w'® uHA®),
where u belongs to the center of (Ug)[[h]]. u=1mod h, and ¢(u)=1.

ProOF. It suffices to use Proposition 3.11 (for n = 3 to prove existence, and
for n = 2 to prove uniqueness). @

REMARK. Let &(y) be an arbitrary “universal” solution of equations (1.8),
(1.10), (3.15) of the form Z(y) = 1 + y/6 + o(y) (there are such & that
are no less “natural” then & ; for example, the particular sections s:, in the
definition of & can be replaced by others, or d)'" can be constructed from
®, in some other way than indicated in the proof of Proposition 3.10). Then,

arguing as in the proof of Proposition 3.12, we find that & (w) can be reduced,
by twisting via a symmetric “universal” F(y) of the form 1+ o(y), to the
form & (), where ¥ is expressed in terms of y by means of a “universal
formula” of the form ¥ = y + o(y). Here y is defined uniquely for the

given &, and F(w) up to multiplication by (u_1 ® u_l)A(u) , where u is
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expressed in terms of y by means of a “universal formula” of the form u =
lL+o(y). An example of a nontrivial “renormalization” of y is given by
v =y +aAl, o PpPen pqc:,, where ¢ is the tensor of structural
constants of g, and a € Q. : -
Now let g be adeformation algebra over k[[2]], and ¢ a g-invariant element
of /\ g, where /\ g denotes the skewsymmetric part of g®g®g. We can
make Ug into a coboundary quasi-Hopf QUE- algebra by defining the usual

comultiplication in it and putting R=1,® =& (h @) . Then twisting via an
element F € Ug® Ug such that F =1 mod h and (¢ ® id)(F) = (id ® €)(F)
= 1, we obtain again a coboundary quasi-Hopf QUE-algebra, which we denote

by Ag’%F.

PROPOSITION 3.13. Any coboundary quasi-Hopf QUE-algebra is isomorphic
oA, ., F for some g, ¢, F.

Proor. Everything reduces to the following lemma.

LEMMA. Let @ be a Lie algebra over k[h)/(h"), n > 1, and a free module
over k[h]/(h"), and let ¥ € /\3 @ be invariant with respect to the adjoint repre-
sentation, with w =0mod h. Let (A, A, e, ®, R) be a coboundary quasi-Hopf
algebra over k[h)/(h™*") and a free module over k[h)/(h"*"), such that after
reduction mod h" theset (A, A, €) becomes Ua with the usual Hopf structure,
while ® and R become & (y) and 1. Then by twisting (A, A, e, ®, R) via
some Fe A® A such that F=1mod h" and (e ®id)(F) = (id®¢)(F) =1,
we can make (A,A, &) = Ua, ® = &(y), R=1, where a is a Lie algebra
over k[h]/(h"“) a free module over k[h]/(h"*') and such that a/h"a = &,
while y € /\ a iIs invariant with respect to the adjomt representation of a, with

ymod " =V.

PrOOF. Put L = k[h)/(h"), I, = W k[h)/h"*" " k[n], I, = hk(h]/h"* " k[h].
Choosing for ¥ € (/\3 @) ®, I, an inverse image ¥ € (/\36) ® f, (which
is not, in general, a-invariant), we show that we can properly define ®, =
EW) e ARAR® A, satlsfymg (1 8), (1.10), (3.15). For this, consider the L-
algebrasB~L®Ilt691t€B ,B=LoelteoL’+1,'® - (where ¢
is a formal variable) and the element vt € (/\ d) ®, B. We have &(yt) €
(Ua@ Ua® Ua)®, B and &(Y¥t) -yt -1 € (Ua® Ua® Ua)®, J, where
J=Lr® L ®- - . This allows us to define &(y1) € (Ua® Ui® Ua)®, B
by the formula &(yt) = (£(wt) — ¥t) + ¥t and verify that &(yt) satis-
fies (1.8), (1.10), (3.15). Finally, put ®, = 1+ (f; o ,)(&(¥?) — 1), where
f, is the natural mapping (UE® Ui Ua)®, I, - A® A® A, while f:
(Ua@Ua®Ua)®, (1,181, ' @1 a ea )—+ (Ua® Ua® Ua)®, I, is induced by
the natural mapping I ta1, ' ® 1, 8@ s il (putting ¢ equal to 1). Clearly,
®, = ® mod R,

We proceed now to the twist of (4, A, e, P, R). First we make R = 1.
Then & satisfies, along with (1.8) and (1.10), the relation (3.15), so that
h™"(® — ®,) mod & is a 3-cocycle of the complex (3.17). A further twisting
of (4, A, ¢, P, R) by means of symmetric elements F € 4 ® 4 such that
F =1mod A" and (e®id)(F) = (id®¢)(F) = 1 allows us to change this cocy-
cle by a coboundary without destroying the condition R = 1. We can therefore
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(see Proposition 3.11) arive at the relation

b = <I> +h X, X e/\ a/ha) (3.22)
Since- R=l A is cocommutatlve Hence
Alt{(A®1d)(A(a)) - (id ® A)(A(a))} = 0, ae A. (3.23)

On the other hand, from (1.1), (3.22), and the definition of @, it follows that
if the image of a in 4/h"A = Ud is a € a, then

(A®1d)(A(a)) - (id ® A)(A(a))
=[a®1®1+1Qa®1+101®a, ¥w+h"x].
From (3.23) and (3.24) it follows that both sides of (3.24) are equal to 0. There-
fore A is coassociative. Arguing as in the proof of Proposition 3.7, we find that
(A, A,e) =Ua for some Lie algebra a over k[h]/(h"“) such that a is a free
module over k[k]/(h™*") and a/h"a =d. Identify (A’a a)®, I, with k- A’ a
andput y=w+h"yeh- /‘\ a. Since the right-hand 31de of (3.24) is equal to

(3.24)

0, the element y is a-invariant. It is clear that &(y) = ®

We describe now the morphlsms A AE#‘u 7 in the spirit of Proposi-
tion 3.9.

PrROPOSITION 3.14. Let A be a homomorphism g — @ such that
(,l ®A®A)p) = @, let u e Ug be such that e(u) = 1, u = 1 mod h, and

= (u®u)-(AQA)(F)-A(u)~" where 1 is the extension of A to a homomorphism
U g—Ug,and A: Ug—- U g® Ug is the standard (untwisted) comultlplzcatzon
Then the mapping (Adu)oA: Ug — Ug is a morphism A, — A G.F and
all morphisms A, 5 gt — A; 5 F aresoobtained. Two palrs (l u) and (,1, , Uy)

define the same morphzsm A Fo A5 F ifand only if A, = exp(—h- adv)o/l
and u, = ue™ for some v e 9.

PROOF. As in the proof of Proposition 3.9, it suffices to verify that if there
exists a homomorphism A, , 1 — A; 5 7 then F has the form (u®u)-A(u~ 9,
where u € Ug, ¢e(u) = 1 and U= l mod h . For this in turn it suffices to
construct elements u, € Ug, n > 1, such that s(u )= 1, u, = lmodh,

= (u,®u,) -A(u;') mod 4", and u,,, = u, mod A" . For u, we can take
1. Suppose u, already constructed, and put F = (u, ®u") F-Au u,). Then
F = 1 mod 4", while Adu, is an isomorphism A_ 2 A- G.F- Hence
there exists a homomorphnsm ¥z .4 e A- F.F lt follows that in the
coboundary quasi-Hopf QUE-algebra As 5 F the element R is equal to 1, so
that F is symmetric. Put 6 = h™"(F - l) mod 4 ; then @ belongs to the term
C? of the complex (3.17). The proof that u,,, exists now reduces to verifying
that 6 1s a coboundary. By Proposition 3. ll it suffices to prove that dg =0,
where d is the differential of the complex (3.17).

The reduction of / modulo A" isa Hopf algebra homomorphism Ug/h"Ug
- Ug/h Ug and therefore maps g/h"g into §/h"g. Denote the image of 7
in A*(@/h"8) by . Then (f® f® f)(&(h*p)) mod h"** = &(h’p). On the
other hand, (f® f® f)(&£(h* @)) is obtained from & (h’%) by twisting via F .
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Hence & (h’p)—&(h*®) = h"-d6 mod h"*' . It follows that h’(p —p) = h" d#

mod A™*', so that d@ € \*(g/hg). This can happen only when d6 =0. e
Fmally, we come to the quasitriangular quasi-Hopf QUE-algebras. It turns
out that any paxr (g,t), where g is a Lie algebra over k and ¢ a g-invariant

element of Sym g, can be quantized. To do this, we take (Ug)[[A]] for A4,

define A and ¢ in the usual way, put R = 2 , and try to find a g-invariant
element ® € (Ug® Ug® Ug)[[h]] satisfying (1.8), (1.10), (3.9a), (3.15) (it will
then also satisfy (3.9b), since R(x,y*z)=R(z*y, X)).

THEOREM 3.15. Such a ® exists and is unique up to twisting via symmetric
g-invariant elements F € (Ug® Ug)[[h]]. It can be expressed in terms of T = ht
by means of a “universal formula” ® = .#(t) = 1 + o(t), which is unique up to
twisting via a symmetric “universal” F(t) of the form 1 + o(t). Analogues of
Propositions 3.13 and 3.14 hold also in this quasitriangular case.

To keep the size of the present paper within bounds, the author is forced to
postpone the proof of this theorem to a later publication. Here, we show that
when k = C the element @ can be determined from the relation G, = G,®,
where G, and G, are solutions of the differential equation

12 23

G'(x):i-z(t?-kt )G(x), B =h/2ni, (3.25)

x -1

defined for 0 < x < 1 with the asymptotic behavior G,(x) ~ xz'u as x — 0
and G,(x) ~ (1-x)"" as x = 1. Here 1"’ = 1@ 1€ (U9®, P =10te
(U9)®, G(x) € (Ug)®*[[h]], X" should be interpreted as exp(hlnx - £'2) =
1 +hlnx -2+ ..., and the notauon G,(x) ~ xh ’ means that G,(x) =
(1+ fi(x)h + fz(x)h2 )x , where the f, are analytic at x = 0 and
f;(0) =0. To prove (1.2) and (3.9a), consider the system

t

oW - .
ﬁ'h}:z._z"w’ i=1,2,...,n, (3.26)

where W(z,,...,z,) € (Ug)®"[[k]] and ¢ is the image of ¢ under the
(i, j)th imbedding Ug ® Ug — (Ug)®". This system arose [19] in connec-
tion with the conformal field theory corresponding to current algebra, and has
been studied in [5]-[8]. For us it is essential that, as indicated in [19], the sys-
tem (3.26) is self-consistent, i.e., the curvature of the corresponding connection
is equal to 0. We note also that W /dz, +---+ dW/dz, = 0, so that W
depends only on the differences z, - z Iz
For n = 3, the solutions of the system (3.26) are of the form

Tiil2 13 23
(z,=z)"" T TOVG (2 = 2,) (2, = 23)),

where G satisfies (3.25). Hence @ can be determined from the relation W, =
W,®, where W, and W, are solutions of (3.26) for n = 3 in the domain

Y 2 T3, ,23
(25 259285} € IR3|zl > z, > z;} with W, ~ (z, - 22)'” (zy= zs)h(r *) for



1454 V. G. DRINFEL'D
s 71(112“;3)
2, -2y € 2, ~ 25, and W, ~ (2, - z,)" (2, - z;) for z;, —z; €
z, — z,. To prove (1.2), consider the system (3.26) for n = 4 in the domain
02, R DT R4]zl- > 25> zy >z}, in which we distinguish five zones: -

l) 2, —25 %€ 2y~ 23K 2; —Zj;

2) Zy =2, & 2y =23 KT = Ty

3) Z;—25 X G~ K2~ 25

4) z, -2, € 2,~-2, €2, - 2,,

S) z, —Zs K 2y=24 5 2y~ 2R T = B4
These correspond to possible arrangements of parentheses in a product of sym-
bols x,, x,, x5, X, :

1) ((xlxz)x3)x4, 4) x1(x2(x3x4)) )

2) (XI(X2X3))X4 s 5) (xlxz)(x3x4) .

3) x,((x3x3)x4)

It is easily shown that there exist solutions W, ..., W, having the following
asymptotic behaviors in the corresponding zones:

ht'? h(1"+13) h(t" 1% +%%
W,~(z,-2,) (z,-2z,) (z, — z,)
I 1 2 I 3 1 4 ’
W, ~ (z 5 )i_u“(z . )Z(l'zu") . )F(t"+12“+t“)
2 T%g T4 1743 17 “a4 ’
he? Il R+ 40"
Wy~(z,-2z3)" (2,—2,) (z)— z,) >

24 T2 13 14
) h(t' "+t 41%)
_24)

he* AP+t
Wy~ (z3-2)" (z,-2,) (z,

T .12 7,34 P 14 23 24
W,s . (Zl _ zz)ht (23 _ 24)h1 (Zl _ 24)h(r T+ ).
This should be understood, say for W,, as meaning the equality W, =
2 T ,34 T 4

(1 +fl(u, v)h + fo(u, v)h2 e )z = zz)h' (2~ 24)'" (z;—= 24)"('”“““23“2 ) ,
where u = (z, - z,)/(z, - z,), v = (z;— z,)/(z, - z,), and the f; are analytic
in a neighborhood of (0, 0), with f;(0, 0) = 0. It is easily shown that

W=W, - (d®1), W,=W; (ild® AQid)(P),

W, =W, (189), W, =W, (A®id ®id)(D),

Ws=W, (1d®id® A)(P).
From all this follows (1.2).

To prove (3.9a), consider (3.26) for n = 3 in the domain {(2y, 2z,, 2;) €

C3|Imz| >2Imz, >Imz;, z, #2z, #2;#2,}. Let W, ..., W, be solutions
for which :

,_”12
W, ~(2,—2,)" (2, — z,)

T3, 23
MR pp |2, = 2z,] € |z, = 2],

Wy~ (2= 2)" (2= 2" ") for |z, - 2] < Iz, - 2],
W, ~ (23 = 2,0 (2, — 20" ) for |z, — 2, € |z, — 2],
W,~(z, - z3)z'”(zl - zz)z('uﬂu) for |z, — z\| « |z, — 2,|,
Wy~ (2, - zlA)E'”(z3 = zz)z('”“u) for |z, — z,| « |z, — z,],
Wy~ (2, = 2" (23— 2" for |z, — 2, < |2, — 2.
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Suppose first that z, € R. Considering W, and W, for z, >z, > z;, W, and
W, for z, >23>z2 W, and W for z; > z, >zz,weﬁndthat W W<I>

W, =W, d)m W, = W, <D3'2 On the other hand, considering complex values

13, 23,
of the z,, we find that W, = W, W, = W12, w, = et N

From this follows (3.9a).
REMARK ON KNOT INVARIANTS. Let g and ¢ be as above. By Theorem 3.15,

the pair (g, t) determines a quasitriangular quasi-Hopf algebra (4, A, @, R),
where 4 = (Ug)[[A]], A is the usual comultiplication, R = eMi? ,and ® is
expressed in terms of 7 = At by the “universal formula” @ = /é’ (). Ap-
plying now the quasi-Hopf modification of the Reshetlkhm construction (see
the Introduction), we find that to every knot y in R’ corresponds an element
p, € (Ug)[[A]], expressed by a “universal formula™ p, = &,(t) . The “universal
knot invariant” 2 is independent of the arbltrarmess in the choice of .# and
contains all invariants of R-matrix type that correspond to R-matrices belong-
ing to the irreducible components of the solution manifold of equation (3.4)
containing the identity matrix. Let ¥, be the space of symmetric tensors of
rank r formed from 7t and the tensor of structural constants of g in accor-
dance with the rules of acyclic tensor calculus with coefficients in Q. These
tensors can conveniently be represented by means of graphs (see the Appendix
to [20]). Let U,, be the subspace of ¥, corresponding to the connected graphs
with first Betti Rumber equalto k. If we choose a basis x e 1 R U
in U,, then £ (1) can be written as a formal series with rational coefficients
mthexrk,wherer—lz k=0,1,..., 1 <i<dmU,. If ®is
defined by means of (3.25), the rauonahty of the coefficients is not obvious,
but it follows from the uniqueness part of Theorem 3.15. The author hopes to
examine these questions in detail in a later publication.

Now let g be a simple finite-dimensional Lie algebra over C with a fixed
invariant scalar product, and ¢ the corresponding element of g ® g. From
this data can be constructed, on the one hand, a quasitriangular quasi-Hopf

QUE-algebra ((Ug)[[#]], A, ®, R), where A is the usual comultiplication, R =
g , and @ is determined as above by means of (3.25), and, on the other

hand, a quasitriangular Hopf QUE-algebra (U, g, R), where U,9 has the same
meaning as in Example 6.3 of [2], and R the same as in §13 of [2].

PrROPOSITION 3.16. ((Ug)[[h]], A, @, R) can be turned by a twist into a qu-
asitriangular Hopf QUE-algebra isomorphic to (U,g, R).

PROOF. As shown in §4 of [21], there exists an algebra isomorphism ¢: U,g
= (Ug)[[h]], which is the identity mod 4 and such that ¢ takes the co-
multiplication A,: U,g — Uhg® U,g into a homomorphism Ah: (Ug)[[A]] —
(Ug ® Ug)[[#]] of the form Ah(a) = F'A(@)F, F € (Ug® Ug)[[A]], F=1
mod 4. Without loss of generality we can suppose that (e ® id)(F) = 1 =
(id®e)(F). Put R = (¢p ® ¢)(R). The quasitriangular Hopf QUE-algebra
((Ug)l[A11, Ah, R) can be turned, twisting via F, into a quasitriangular quasi-
Hopf QUE-algebra of the form ((Ug)[[#]], A, ®, R). From (1.1) and (3. 1) it
follows that R and @ are g-invariant. Furthermore twisting ((Ug)[[~]], A
®, R) viaa g-invariant element of (Ug® Ug)[[4]], we can make 32' =R. The
equality R'R = Ah(ehc"/z)(e_"q/2 ®e "2y where C, is the image in U,g
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of the Casimir element'C € Ug, is proved in §5 of [21]. Therefore R¥R =
Ah(ehC/Z)(e—hC/Z ®e—-h6/2), <6 that BZIB _ A(ehC/Z)(e—hC/Z ®e—hC/2) s

R ¢"** . 1t remains to use the uniqueness part of Theorem 3.15, which
is an easy consequence of Proposition 3.11 and formula (3.12). e

From Proposition 3.16 follows Kohno’s theorem [5], which asserts that if p
is a finite-dimensional representation of g, and p, the corresponding repre-
sentation of U, g, then the representation of the braid group B, corresponding

to the R-matrix (p, ® p,)(R) is equivalent to the representation of B, as the

monodromy group of the equation obtained from (3.26) by replacing ¢ by

p®"(tij) . To be sure, what is asserted in [5] is the equivalence for all 4 ¢ 7iQ),
while what follows from Proposition 3.16 is equivalence for almost all # € C
(without specification of the “exceptional” set).
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