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ON QUASITRIANGULAR QUASI-HOP¥ ALGEBRAS
AND A GROUP CLOSELY CONNECTED WITH Gal(Q/Q)

V. G. DRINFEL'D

ABSTRACT. A previously announced theorem is proved concerning the struc-
ture of quasitriangular quasi-Hopf algebras in the framework of the theory of
perturbations with respect to the Planck constant. In the process we use the pro-
unipotent version of a group defined by Grothendieck that contains Gal(Q@, @).

§1. Introduction

This paper is devoted primarily to the proof of a theorem announced in [1]
concerning the structure of quasitriangular quasi-Hopf algebras in the frame-
work of the theory of perturbations with respect to the Planck constant /.
As a technical tool we use the pro-unipotent version of a group introduced by
Grothendieck in [2]—a group of enormous interest because of its close connec-
tion with Gal(Q/Q).

Let us recall the basic definitions of [1]. A quasi-Hopf algebra differs from a
Hopf algebra in that the coassociativity axiom is replaced by a weaker condition.
More precisely, a quasi-Hopf algebra over a commutative ring k , as defined in
[1], is a set (4, A, &, ®), where A is an associative k-algebra with unity, A
a homomorphism 4 - A® 4, ¢ a homomorphism A — k (we assume that
A(l) =1, g1) =1),and ® an invertible element of A ® A ® 4, all these

satisfying
(id ®A)(A(a)) = @ - (A ® id)(A(a)) @', acd, (1.1)
(id@id ®A)(®) - (A ® id ®id)(®D)
= (10®)-([deA®id)(®) (Pe1), (1.2)
(e®id)oA=id = (id®e)oA, (1.3)
(id®e @ id)(P) =1, (1.4)

together with an axiom which in the Hopf case, i.e., for @ = 1, reduces 10 exis-
tence and bijectivity of an antipode. In the situation of the present paper, when
(A,A,e,®) isa deformation of a Hopf algebra depending on an “infinitely
small” parameter 4, this axiom is satisfied automatically by Theorem 1.6 of
[1]. As in the Hopf case, A is called the comultiplication, and & the counit.
The paper [1] generalized to the quasi-Hopf case the notion of quasitriangular
Hopf algebra defined in §10 of [3] and inspired by the quantum method for
the inverse problem [4]. Spécifically, a quasitriangular quasi-Hopf algebra is a
set (4, A, e, ®, R), where (A,A,e, D) isa quasi-Hopf algebra and R an
Primary 16A24; Secondary 81E40.
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830 V. G. DRINFEL'D

invertible element of 4 ® 4 such that

Ala)=RA@R™', aed, (1.5)
(A®id)R) = &R @) 'R”, (1.6a)
" (id®A)(R) = (@23‘)“1{‘3@27{;3”@". (1.6b)

Here A' =g oA, where 6: A® A — A® A interchanges the tensor factors. If
R=7Y,a,®b, then by definition R” =Y ,q,@b,®1, R®=Y,a,®115,,
and R® = >.;1®a;®b;. We also need to explain that, for example, if ® =
2% ®y;®z;, then @32 = 2.i¥;®z;®x;

The gist of the axioms (1.1)-(1.6) is that the representations of a quasitri-
angular quasi-Hopf algebra 4 form a quasitensored category in the sense of
[5] (see also §3 of [1]). This means that, firstly, there exists in the category

of representations of 4 a tensor-product functor: given two representations of
A4, in k-modules V| and V,, the representation of 4 in V| ® V, is defined

as the composite 4 -2+ 4® A — End, (¥, ® V,). Secondly, there exist functo-
rial isomorphisms of commutativity ¢: ¥, ® ¥, — ¥, ® ¥, and associativity
a: (V,®V,)®V; — V, ® (¥, ® V;) where the V, are representations of 4.

Namely, a is the operator in ¥, ® ¥, ® V; corresponding to @, and ¢ is the
composite of the operatorin ¥, ®V, corresponding to R with the usual isomor-
phism o: V@V, — V,® V| . Thirdly, there exists an identity representation k

and isomorphisms ¥V ® k — V¥ and k ® ¥V — ¥ for any representation V.
Finally, (1.2), (1.4), and (1.6) guarantee the commutativity of the diagrams

erer)er, = (eheiel) = Vel;e(;ek)
-lv"" -l—"‘"
Meel)er,) - >m®un®@®&%

)

nen
/ N (1.8)

ek, =Vekel)

(henel, ——V,o,el) — (h8V)eV,
al TC@id : (1.9a)
s -1
neen) —==Ve el —— Vel
Ve (hel) —— (hehe ——Ve (V)
] [iaee (1.9b)
Vool = (her)el, =¥V e

We note that in general R # R~', and consequently the commutativity iso-
morphism is not involutory (a point of difference between quasitensored cate-
gories and tensored [6]).
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If (4,A,¢e,®,R) is a quasitriangular quasi-Hopf algebra, and F an in-
vertible element of 4® 4 such that (id®e)(F)=1= (e®id)(F), then, putting

Ala)=F-A@a)-F', (1.10)
&= F2 . (ded)(F) @ (Aeid)(F ) - (FH7, (1.11)
ﬁ;g};ﬂ .R.F7', (1.12)

we obtain a new quasitriangular quasi-Hopf algebra (4, A, &, @, ﬁ); we say
it is obtained from (4, A, &, @, R) by twisting via F. The quasitensored cate-
gories that correspond to (4, A, &, ®, R) and (4, A, e, @, R) are equivalent.
It is therefore natural to refer to the twisting as a “gauge transformation”.

We shall study quasitriangular quasi-Hopf algebras in the framework of the
theory of perturbations with respect to /#, restricting ourselves to the case of
characteristic 0. These words are given a precise meaning by the following
definition (QUE is short for “quantized universal enveloping”).

DEeFINITION. Let k be a field of characteristic 0. By a quasitriangular quasi-
Hopf QUE-algebra over k[[h]] is meanta topological quasitriangular quasi-Hopf
algebra (4, A, &, ®, R) over k[[h]] such that A/hA is a universal envelop-
ing algebra with the standard comultiplication, and A, as a topological k[h1l-
module, is isomorphic to V[[4]] for some vector space V over k.

REMARK. Since A/hA is a universal enveloping algebra, it follows from (1.4)
and the invertibility of @ that ® = 1 mod /. Similarly, R =1 mod# , and for
a twisting of quasitriangular quasi-Hopf QUE-algebras, F = I modh.

Inspired by [71-[9], the following method was proposed in [1] for constructing
quasitriangular quasi-Hopf QUE-algebras. Let g be a Lie algebra over k[[A]]
which as a k[[#]]-module is isomorphic to ¥'[[A]] for some vector space V' over
k. (This condition on g means that g is a deformation of a Lie algebra g,
over k, where g, = g/hg: such algebras g will therefore be called deformation
algebras.) Suppose given a symmetric g-invariant tensor ¢ € g ® g, where
® is the complete tensor product. Put 4 = Ug, where Ug means the Ah-adic
completion of the universal enveloping algebra. Define in the usual way &: 4 —
k[[h]] and A: A — A® 4 (where ® is the complete tensor product), and put
R =", Then (1.3)~(1.5) are satisfied, and it remains to find @€ 4@ 4® 4
satisfying (1.1), (1.2), (1.4), and (1.6) (note that (1.1) means in this situation
the g-invariance of ®). The first main result of the present paper is:

THEOREM A. Such a @ exists, and is unique up to iwisting via symmetric
g-invariant elements F € A® 4.

REMARKS. a) If A is the usual comultiplication in 4 = Ug and R=e¢
and A and R are defined by formulas (1.10) and (1.12), then the equalities A=
A and R = R are equivalent to g-invariance and symmetry of F (¢ commutes
with the g-invariant elements of A® 4, since t = (A(C)-C®1-1@C)/2,
where C € Ug is the Casimirfelement).

2) Together with Theorem A we prove that if the condition R = e is
replaced by the at first sight weaker conditions of symmetry and g-invariance

of R, then automatically R = " for some t€g®g.
Uniqueness in Theorem A is proved simply enough (see Propositions 3.2 and
3.4). For k =C, what is proposed in [1] is an explicit but transcendental con-

struction for @ by means of the Knizhnik-Zamolodchikov system of equations

ht/2

hif2
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(for short: the Kz System) that arises jp conformal field theory [10]. This D,

hereafter denoted by Dy, is €xXpressed in terms of T = At by means of a
“ C-universa] formula”; ie., if we write (DKZ in the form

e
where the €; are a basis of 8 as a topologica] CllA]]-module and the tensors
. p) 8T Symmetric in each group of indjces I,7,1, then the U, n,p) are

CXpressed in terms of the Structural constants ¢, of the algebra g and the
components t*¥ of the tensor 7 in accordance with the rules of acyclic tensor
calculus with coefficients in C, while (el 1 1.2), (1.4), angd (1.6) follow, in
accordance with the rules of acyclic tensor calculus, from the fact that the C:S

are the structura] constants of a Lje algebra and ¢ 18 symmetric and invariant,

/
C,;Cy s Where

rn-g

[,7,1 form a “cycle”.) Among the coefficients of the C-univer;al formula
oceur (see (2.15) and (2.18)) the numbers C@m+1)/(2miy . o N, which
are imaginary and probably transcendentg], Thus, for % 2 C the existence part
of Theorem A cannot follow from the Construction of (I)KZ‘ However, it is

proved in §3, in Conjunction with the following theorem,

THEOREM A’, There exists g Q-universq] Jormulg expressing the element @
of Theorem A in terms of t=ht. Itis unique yp 1o IWisting vig g Symimetric
Q-universal F — F(r).

The Quasitriangular quasi-Hopf algebras supplied by Theorem A wil] be called
the standarg algebras,

THEOREM B, Any quasitriangular quasi-Hopf QUE-algebrg can be made sian.
dard by q Suitable twist,

The C-universa) formula eXpressing D, in terms of T=ht is of the form

D, = exp PKZ(rIZ, 1-23) where Frs is a Lie (ie., Commutator) forma] series
With coefficients in C (see §2). Theorem A can be strengthened as follows,

_ If @ has the form exp P(lzt'z, /ztzs) where P isalje formal series, then the
D defined by formula (1.11) is not, in Beneral, of the same form. However, on

the set of Lie series P over such that ¢ = exp P(/zt”‘, mzs) and R = /2
satisfy ( 1.2) and (1.6) we can define (see §4) a natura) transitive action of a

by GT(k). This action forms the bagjs of the proof of Theorem A", The
definition of GT(k) is in €ssence borrowed from [2], where, in Particular, it
is shown how to construct g canonical homomorphism Gal(Q/Q) - GT(Q,),
where @ is the algebraic closure of @ in C and 4 IS a prime number,

The plan of the paper is ag follows, §2 is devoteg to @p,. In 83, the
methods of [1] are used to prove Theoremsg A, A’ and B. In §4 we define the

tion with Gal(@/@). In §5 we prove Theorem A" and also reduce the study
of GT(k) to the study of an inﬁnjte—dimensional graded Lie algebra ot (k).

In §6 we gather tog
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In §6 we gather together certain facts about this algebra. §4 is independent of

§§2 and 3, and §§5 and 6 are independent of §3.
The author thanks A. A. Beilinson, G. V. Belyi, Yu. 1. Manin, and G. B.

Shabat for calling his attention to the papers [2], [11]-[15].
§2. Construction of @,

@y, is most easily defined by the formula &, = G, . G, where G, and G,
are the solutions of the differential equation

12 23
G’(x):ﬁ(f;Jr‘ )G(x), i h/2i, (2.1)

x—-1

12

that are defined for 0 < x < 1 and have the asymptotic properties G (x) ~ xM
23

for x — 0 and G,(x) ~ (1 - x)" for x — 1. Here M =tele (Uy®
and P =1@te (U g)®3 , where g is a deformation Lie algebra over C[[A]]
and the tensor ¢ € g ® g is symmetric and g-invariant. The G in equation
(2.1) must be an analytic function (0, 1) — (Ug)"’a3 : i.e., for any n the image
of G(x) in (Ug)®*/h"(Ug)® must be of the form YN, a(x) - u;, where
u; € (Ug)® /" (Ug)®®, the a, are analytic functions (0,1) — C, and N
depends in general on n. In the most important case, when g = gollA]] (ie., g

is the trivial deformation of g), this means that G(x) = Yoo &(x)h", where
each g, is an analytic function with values in some finite-dimensional subspace

1z
v, C (Ug0)®3. Of course, x™ should be understood as exp(filnx - t'z) =

1+#lnx -2+ . The notation G, (x) ~ xﬁrlz means that Gl(x)x_r”]2 has
an analytic continuation into a neighborhood of the point x = 0 and becomes
1 at that point. Existence and uniqueness of G| and G, are proved without
difficulty.
The KZ system has the form
oW i .
?5‘7=ﬁ22.~2--W’ i=1,2,...,n, (2.2)

where W(z,;...,2,) € (Ug)®" and ¢ is the image of ¢ under the (i, j)th
imbedding Ug® Ug — (U g)®" . For us it is essential that, as indicated in [10],
the system (2.2) is self-consistent; i.e., the curvature of the corresponding con-
nection is 0. Since 8W/8z, +:- + 0W/dz, = 0, the function W depends
only on the differences z,— z;. Furthermore, };z;3 Wiaz =k, ;t"W,
so that (2.2) reduces to a system of equations for a function of n — 2
variables. In particular, for n = 3 the solutions of (2.2) are of the form
12 G013 23
(zs—zl)ﬁ“ ) G((2,— 2,)/(2,— 2,)), where G satisfies (2.1). Therefore
®,, can be determined from the relation W, = W, @, where W, and W, are
the solutions of (2.2) for n = 3 in the region {(z,, z,, Z3) € R | 2, < z, < 24}
. 12 13, 23
with the asymptotics W, ~ (z,— zl)r” (z4— zl)ﬁ(r 7 for z,— 2, K Z3—Z,
23 12, .13

and W, ~ (24— 2,)" (23— T ) for z,—z, < 7, — 7.

This definition of @, in terms of the system (2.2) is convenient, in par-
ticular, for verifying (1.2) and (1.6) (equality (1.1), equivalent to g-invariance



834 V. G. DRINFEL'D

of @, is obvious). To prove (1.6), we consider (2.2) for # =4 in the region
{l2, 85,2, B, )& R! | z, < z, < z; < z,} and distinguish five zones:

1) g, —2; € 2,—2 €igg— 2 Nz3—2,€2,-2,Kz,— 2|,
2) 23— 2, K22, K 24— 2y, 4) 2, —Z; K 2, — 2, K 24— Z},

These zones correspond to the “vertices” of the pentagon (1.7) in accordance
with the following rule: if ¥; and V fall between any two corresponding paren-
theses and V, is outside these parentheses then |z; — z;| < |z; — z[; for

example, (V, ® (V, ® V;)) ® ¥, corresponds to the second zone.

LEMMA. There exist unique solutions W, , ..., W, of the system (2.2) with
the following asymptotic behaviors in the corresponding zones:
m” T () A M )
I’VIN(ZZ—Z[) ) (24 1)
ﬁt” A2 n(r"‘+:2"+r )
% ~ (23 - Zz) (23 ) (24 )
R R+ r(t'2+£”+t”)
Wy~ (zy3~2;) (24— 2,) (Zy— 2] ‘ 5
R R+ B2
W, ~(zy~— 23) (24 Z,) (z4—2;) s
fir'? T R P
Wy (23— 7)) (2,-23)" (2,—2) L

It is to be understood here that, e.g., for W this means that

14, .23

Rt'? At AP
z3) (24— z))

Wy=f(u,v)(z,—z)) (34_

L

where u = (z, — z,)/(z, — z,), v = - z;)/(z, — z,), f is analytic in a
neighborhood of (0, 0), and f (0,0)= 1

Proor. Consider, say, the fifth zone. Make the substitution W = g(u, v)
x(z4—zl)”, where T =t +tB+ M+ 2424 u= (25—Z; ) /(24— 2) s
and v = (z, — z,;)/(z, — 2,). Then for g we obtain a system of equations of
the form

g_i =h(f‘l+R(U,v)) - g(u,v),

ag

{2.3)
T h(V—I—S(u v)) glu,v),

where the functions R and S, with values in (Ug)‘g’3 , are analytic in a neigh-
borhood of (0, 0), while 4, B € (Ug)®3 are independent of u and v (note
that [4, B] =0, in view of the integrability of the connection V correspond-

ing to (2.3)). We must prove existence and uniqueness of a solution of the

system (2.3) of the form @(u, v)u"*v"®  where @(u, v) is analytic in a neigh-

borhood of (0,0) and ¢(0,0) = 1. In other words, we must prove exis-
tence and uniqueness of an analytic function @(u, v) such that 9(0,0) =1,

o . vV, 9 = 0/0u- hAu™", and 97" . V, 9 =0/dv - hBu™', where
V,=0/0u- h(Au_l +R(u,v)) and V, = 8/0v — h(Bv™' + S(u, v)). This
can be done by the method of successive approximations. @

It is easily seen that ], ..., W have analytic continuations into the whole

region 2 <2y < 2

W, (D, @1), W,
W - (A®1d®1d)(¢»l
prove the first two o

Putting ¥, = ¥, -

V2
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for z <z, < 2,, 2
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av
dz,

14
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av
oz,
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region z, < z, < zy < z,. Formula (1.2) follows from the equalities W) =
Wy« (D, ® 1), Wy =W,;-(id® A®id)(Dy,), Wy =W, (18 Dg,), W =
W, - (A®id®id)(Py,), and Wy = W, (id®id®A)(Dy,) . We show how to
prove the first two of these.

Putting ¥, = W, - (z4— z,)

AU L
(") and

—ﬁ(r”+124+t”)

V=W, (Py; ® 1) (24— 2y)
14, 24, .14
_ W.l . (zd _ zl)—ﬁ(z +t +t. ) . (‘sz® 1) ,
we will prove that ¥, = ¥,. It is easily verified that ¥, and V¥, are analyltic
for z, <z, < z3, Z, € ]In'&]E"l\[z1 . 2] (2, can also equal oo 1). Furthermore, V)
and ¥, both satisfy the equations

av il
—=H ¥, i=2,3, (2.4)
0z, jz'#;z,.—zj
v ij 14 24, 34
LA S S S /0 L LY (2.5)
0z, P Z, — zZ,— 2z,

14
Y _ IVl (2.6)
oz, ! Z,— Z;

From (2.4), (2.5), and the asymptotics of ¥, and V¥, it follows that ¥ and 7,
coincide for z, = oco. This and (2.6) imply ¥, =V,.
23
Now put U, =W, (z;— zz)_'rir and
i . —f 23
U, =W, (id® A®id)(Pgy) - (23— 2,) !
23
=W, (2,—2) " - (id® A®id)(Pyy);
we show that U, = U,. It is easily verified that U; and U, are analytic in the
region z, < z, <z, Z; <Z3< % (z, can equal z4 ). Furthermore, U, and
U, satisfy the equations

AU ¢ .
a_ﬁZZl_z..U, i=1,4, 2.7)
i ji i Jj o

2j 23
20U _j N ) Lail (2.8)
22 j#2’322—'2’j .2'2—'23

3j 23
oU _4 ! .U_ﬁ[i_.’_l.]_]_ (2.9)
623 #2_323_21 Zy— 2,

It is easily seen that U, and U, coincide for z, = z;. From this and (2.8) it
follows that U, = U,.

4
Thus, (1.2) is proved. Replacing x by 1-x in (2.1) shows that ®,, satisfies
the equality
' =07, (2.10)

Therefore (1.6b) follows from (1.6a): it suffices to apply to both sides of (1.6a)
the operator that interchanges the first tensor factor with the third, and to em-

ploy the equalities RY = R and A’ = A. The proof of (1.6a) is contained in
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§3 of [1]. It uses six solutions of the system (2.2) for n = 3 in the complex
domain that have the standard asymptotic behavior in the corresponding zones;
they correspond to the “vertices” of the hexagon (1.9a).

Now replace (2.1) by the equation

G(z) = ol (é + —-—‘E-—)?G(x), (2.11)

2mi\x x—1¥

where 4 and B are noncommuting symbols, and G is a formal series in 4
and B with coefficients that are analytic functions of x. Consider, as above,
solutions G, and G, with the standard asymptotics for x =0 and x = 1. Put
Pgz(4, B) = G;'GE . The algebra C({4, B)) of noncommutative formal series
is a topological Hopf algebra with the comultiplication A(A) =A@ 1 +1® A4,
A(B)=B®l+1®B. Clearly, A(py,) = ¢y, ® @xz - Therefore In gy, (4, B)
is a Lie formal series, i.e., an element of the complete free Lie algebra over C
with generators A4, B (see [16], Chapter I, §3, Corollary 2, Theorem 1). In the
same way as for (2.10) one proves that ¢, satisfies the equality

9(B, A)=p(4, B)"". (2.12)
To obtain analogues of (1.2) and (1.6) for @, , observe that as in [7], the
integrability of the connection corresponding to (2.2) follows from the relations
=" and [V, =0 for i#j#k#1, and [tV + 7%, 94 =0 for
[ # j # k. We now introduce, as in [17], the Lie algebra aﬁ as the quotient

of the complete free Lie algebra over C with generators X'/ .1 <i<n,
1 <j<n,is#j, modulo the ideal topologically generated by the elements

of the_following three types: 1) X —-f‘”; 2) [;YT'”, XM], i#j#k#1L
3) X7 +Xx™, X¥/*), i # j # k. The image of X" in o we denote by X"
Replacing now A" in (2.2) by X"/, we find that the same arguments that prove
(1.2) and (1.6) for ® = ®,, also prove that p,, satisfies the relations
ga(Xu, X23+X24)-¢J(X13+X23,X34)
=(0(X23,X34)-$(X12+X13,X24+X34)-§0(X12,X23), (2.13)

exp(X "+ X7)/2) = p(X, X"2) - exp(X/2) - p(x", XP)!
cexp(X7/2) - (X", X%, (2.14a)

exp(X "+ X)/2) = p(X7, X exp(X22) - (x'?, X'
-exp(X°/2) - (X", )7, (2.14b)

where both sides of (2.13) belong to exp uf while both sides of (2.14a) and
(2.14b) belong to exp uf. Here exp af ={e"|x¢€ af}, where e” is regarded
as an element of the complete universal enveloping algebra U af. In other
words, exp uf is the Lie group corresponding to af.

If we assume for the moment that [4, B] =0, then (2.11) has the solution
x*PP (1 — x)B™ with the standard asymptotics both at x =0 and at x = 1.
Therefore Ing,, € p, where p is the commutant of the complete free Lie alge-
bra with generators 4, B. Let us find the image of In Pxz in p/lp, p]. Since

p is a topologically free Lie algebra with generators U, = (ad B)’(ad A)k[A , B]

(see, e.g., §2.4.2 of
U,,;) form a topolo,
of (ad A)*(ad B)'[4
image of Ingy, in
We show that

14+ ch,uk"
k0

Write the standard s

(1~ x)"Vj(x), w
continuous extensio:

Furthermore, ¥(0):
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p/Ip, p] isequalto |
Hence,

Cgr=

Assuming for the m
the left-hand side of

1
I—i—'i)“/ (1—-x
0

where ¥ = u/2ni

Ypea(l(n)/m)- 2",
infinite product ([19
From (2.15) it fol

One can also give a &
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(see, e.8., §2.4.2 of [18]), the images of the Uy, in p/[p, p] (which we denote by
U,,) form a topological basis in p/[p, p]. Observe that U, is also the image
of (ad A)k(ad B)[[A, B] in p/[p, p]. The coefficients of the expansion of the
image of Inpy, in p/[p, p], with respect to the basis ﬁk, , we denote by ¢, .
We show that

1+ch,u‘k+lfr,xf+l =exp) E'i((;t—)l.)ﬁ(u"+v" —(w+v)"). (2.15)
ke, n=2

Write the standard solutions G, and G, of equation (2.11) in the form G(x) =
(1 - x)BVj(x) , where 4 = A/2ni and B = B/2ni. The functions ¥; have
continuous extensions to [0, 1] and satisfy the equation

V'(x) = Q(x)V(x), " (2.16)
R lnx:ad'ﬂ_
ox)Ee o Benp.

Furthermore, VI(O)'=I and ¥(1)=1 Therefore ¢y, = VZ_IVl =¥V (0) ",
where V is any solution of (2.16). This means that the image of In gy, in

p/lp, p] is equal to fol O(x)dx, where O(x) is the image of Q(x) in p/[p, pl.
Hence,

1 /1 ( 1 )’ dx

C,y = In —— ; 2.17
CH T QiR i Je T 1mx ) x -1 217
Assuming for the moment that u, v € C, Imv <0, Imu < 2n , we find that
the left-hand side of (2.15) is equal to :

1 _ _ R _

1 -i-ﬁf (1-x"")(1- x)‘“—I dx = —'ﬁf x (1 - x)_”“ dx
0

0
=T(1 =B (1 -7)/T(1 -%-7),

where # = u/2ni and T = v/2ni. Using the formula InT'(1 — z) = yz +
T, ({(n)/n) - 2", which follows from the expansion of the I'-function as an
infinite product ([19], Chapter 12), we obtain (2.15).

From (2.15) it follows in particular that

€ o = Go. = Lk +2)/(2mi)". (2.18)

One can also give a somewhat different proof of (2.18): ¢, , can be computed
by means of (2.17), the formula (1 —,?c)'1 = 1+x+x"+--- and the substitution
x=e 7, and €0k by the formula ¢, = ¢, which is a consequence of (2.12).
REMARK. According to the Introduction in [11], similar computations have
previously been made by Z, Q_Nojtkowiak; indeed, they served as a stimulus to
Deligne. '
§3. Proofs of Theorems A, A’, and B

In this section we examine the quasitriangular quasi-Hopf QUE-algebras over
k[[k]], where k is a field of characteristic 0. Let us recall (see Proposition 3.5
of [1]) that a) any such algebra can be brought by an appropriate twist into

symmetric form (i.e., we can make R*' = R); 2) twisting via F preserves
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symmetric form if and only if F2' = F; 3)if R* = R, then A’ = A and
(2.10) holds. We recall also (see §2) that if R* = R, then (1.6b) follows from
(1.6a) and (2.10).

Let g be a Lie algebra over k, and ¢ € g®g be symmetric and g-invariant.
Putting 4 = (Ug)[[#]] we define in the usual fashion A: A - 4 ® 4 and
e: A — k[[h]]. We look for g-invariant elements;;,R €A®A and Pe AQRARA
such that R¥ =R, R=1+ht/2 mod#*, ® = 1 mod/ and equations (1.2),

(1.4), (1.6a), and (2.10) are satisfied (we do not require R = ey
ProrosITION 3.1. Such R and ® exist.

Proor. Suppose we have already constructed g-invariant elements R, €
21 _

(Ug® Ug)l[h]] and @, € (Ug® Ug® Ug)[[k]] such that R, = R,, R, =
1+ ht/2 modh®, ® = Imodh, and R,, @, satisfy modulo A" equa-

tions (1.2), (1.4), (1.6a), and (2.10) (for n = 2 we can put R, = 1 + ht/2,
®, = 1). From the proof of Proposition 3.10 of [1] it follows that there exists a

g-invariant @, € (Ug® Ug® Ug)[[A]] satisfying (1.2), (1.4), and (2.10) modulo
A" and such that @ = ® modA”. Since R, and @, satisfy (1.6a) modulo
h", we have

(A@id)(R,) =B, "RA@ ) 'RPE, + 1"y mod A", (3.1a)

where v € Ug® Ug® Ug is g-invariant. Applying to both sides of (3.1a) the
operator that interchanges first and third tensor factors, we obtain:

(deA)(R )= (B ) 'REGCRI®, + 1"y mod K. (3.1b)

We now look for R,,, and ®, ., intheform R, =R, +h"r and @, =

<I)n+h"ga, where re Ug® Ug and ¢ € Aag C Ug® Ug® Uy. The elements r
and ¢ must be g-invariant and satisfy the equations

P=r, (3.2)
13 23 :
PP = (Aeid)r) + 3¢ = y.

For such r and ¢ to exist, it is necessary that

v — (Aeid@id)(w) + (ideA @ id)(y) — ' ** =0, (3.4)

(ideideA)(w) - v'” -y = aeideid)y’™) - v - v*™, (3.5)
321

o =—a, (3.6)

where o = | — t,t/2 13 We claim that (3.4)-(3.6) are also sufficient for existence
of r and ¢ . Indeed, (3.4) says that y isa 2-cocycle in the complex C*(g)®Ug,
where

C"(g) = (Ug)®",
dla,®  ®a)=10a 8 --®a,

n N
+Y(-)a, @ -®a_ ®Aa)®a, & ®a,
i=I

+(-1)""a, 0 - ®a,®L (3.7)

It follows therefore
w —af2 is a cobow

Here 7 can be chos
tification of Ug wi
into an element of
a e A'ge Ug, it fo
and (3.3) become th

For the existence o

Pl —Fe(ge Ug)®

where f: Ug— Ug
then 5 can be chost
Sym” g@Sym" g ha
follows from (3.5), (

We now prove (3
the equality

F." . (A®ic

and using (1.2) and
of R¥, R R F
or first (3.1b) and th
and using (1.2) and
of formula (3.12) o

derive from (3.1a) tl

125312 13,132, —
Rl’l ch Rﬁ (q)" )

Applying to both si
sor factor with the

5;1 mod 2™, we o
The proof of Prog
® and R, expresse
® = .#(1r) and R
purposes to know o
where o(t) (resp.
higher than or equal

ProrosiTioN 3.2.
(Ug ® Ug)l[h]] and
satisfy (1.2), (1.4),
(Ug® Upg)[[h]] thee
where 8 is a g-inva
determined, while F




R, then A" = A ang
en (1.6b) follows from

netric and g-invariant,

A A~ 4® A4 and
34 and ® € 4@ 4@ 4
% and equationg (1.2),
.R - ehrfz!) )

wriant elements R, €
hat szl'] = ‘Rn} -Rn E
fy modulo 4" equa.

Lput R, = I+ ht/2,
Ows that there exists g

4), and (2.10) modulo
satisfy (1.6a) modulo

d A" (3.1a)

ith sides of (3.1a) the
/e obtain:

0d A" (3 qp)

,"En-i-h"r and Eﬂ-l-l =
Uy. The elements »

(3.2)
(3.3)

=0, (3.4)
v~ ™ (3.5
(3.6)

icient for existence
mplex C*(g)oUyg,

+1®-..®an

(3.7)

QUASITRIANGULAR QUASI-HOPF ALGEBRAS 839

It follows therefore from Proposition 2.2 of [1] that a € Azg ® Ug, while
¥ —a/2 is a coboundary, i.e.,

v—a/2=F"+7 - (A®id)(F. (3.8)
Here 7 can be chosen to be g-invariant; it suffices that under the usual iden-
tification of Ug with Sym” 8 (see [16], Chapter II, §1, Proposition 9) 7 goes
into an element of Sym®g® Sym”g whose image in g ® Sym®g is 0. Since

a € A’g® Ug, it follows from (3.6) that o € A%g. Put ¢ = a/6. Then (3.2)
and (3.3) become the following conditions on s = r — F:
21 2

§—8" =7 —F, seg® Ug. (3.9)

For the existence of an s satisfying (3.9) it is necessary and sufficient that
FloTe(ge U)o (Uge g), ie., that

(feNF -7 =0, (3.10)

where f: Ug — Ug® Ug, fla)=a®1+1®a —A{a). If (3.10) is satisfied,
then s can be chosen to be g-invariant; it suffices that the image of s+ 7 in
Sym” g®Sym" g have no component in g®g. It remains to observe that (3.10)

follows from (3.5), (3.8), and the fact that a € A%y,
We now prove (3.4)-(3.6). Transforming by means of (3.1a) both sides of

the eguality
3, (Boideidoid(R,) = (deAoid)(A s id)R,) .7

and using (1.2) and (1.5), we obtain (3.4). Now express (A® A)(R,) in terms
of R,If s R,lf, R;‘? s Ri“ in two ways (we can apply first (3.1a) and then (3.1b),
or first (3.1b) and then (3.1a)). Comparing the two expressions for (A®A)R,)
and using (1.2) and (1.5), we obtain (3.5). In the same way as for the proof
of formula (3.12) of [1], which generalized the Yang-Baxter relation, we can
derive from (3.1a) the congruence

R®"R@ )RS 1 i = T RE@) T RIGIRE  mog 4,

(3.11)

Applying to both sides of (3.11) the operator that interchanges the first ten-
—321

sor factor with the third, and using the relations Ril =R, and @, =

5;1 mod 4", we obtain (3.6). e

The proof of Proposition 3.1 determines certain completely specific elements
® and R, expressed in terms of t = ht by means of Q-universal formulas
® = .#(tr) and R = # (7). Concerning these formulas it suffices for our
purposes to know only that .#(z) = 1 + O(z) and A(t) = 1+1/2 +0(7),
where o(t) (resp. O(t)) denotes terms in t of degree higher than 1 (resp.
higher than or equal to 1). ¢

ProOPOSITION 3.2. Let g be a Lie algebra over k, and suppose that R e
(Ug® Ug)[[h]] and ® € (Ug® Ug® Ug)[[A]] are invertible, g-invariant, and
satisfy (1.2), (1.4), and (1.6). Then by twisting via some g-invariant F ¢
(Ug@ Ug)[[h]] the elements ® and R can be turned into A (h6) and 4 (h6),
where @ is a g-invariant element of (Sym* glA1l. Furthermore, 0 is uniquely
determined, while F is determined up to multiplication by an element of the Jorm
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(u_1 ® u_')A(u), where u belongs to the center of (Ug)[[h]] and v = lmod#,
g(u)=1.

PROOF. (A4, A, g, D, R) can be brought into symmetric form by twisting
via some g-invariant element of (Ug ® Ug)[[#]] (see the proof of Proposition
3.5 in [1]). We can therefore assume that R¥™ =R (in which case o = ™!
while F must be symmetric). Then everything féduces to the following lemma.

LeMMA. Suppose (®,, R,) and (®,, R,) satisfy the conditions of the propo-
sition, with R*' = R, R)' = R,, ®, = ®,modh", and R, = R,modA".
Let ¢ and r be the reductions modh of the elements h™"(®, — ®,) and
h""(R1 — R,), respectively. Then r is a g-invariant element of Sym2 g, while
@ can be written in the form

p=r" - (A@id)(f) +{deA) /) - /7, (3.12)
where [ is a symmetric g-invariant element of Ug® Ug such that (e®id)(f) =
0 = (id®e)(f). Furthermore, f is uniquely determined up to replacement by

F=f+Aw)-vel-10v, (3.13)
where v belongs to the center of Ug and e(v) =0.

Proor. Since R, and R, satisfy (1.6a), while ®, and @, satisfy (2.10), we
have (A®id)(r)—r'* =™ = Alt p/2. The left-hand side of this equality is sym-
metric in the first two tensor factors, and the right-hand side skew-symmetric.
Therefore both sides are 0;i.e., Altp =0 and re g® Ug. Since reg® Ug
and ! = r, we have r € Syng. Since @, and @, satisfy (1.2), (1.4), and
(2.10), we have

0™ — (A®id®id)(p) + (id ®A ® id)(p)
23

— (id@id®A)(p) + ¢'* =0, (3.14)
(id®e ® id)(p) = 0, (3.15)
p* =g (3.16)

Applying to (3.14) the mappings e® ¢ ® id®id and id®id ®¢ ® &, and using
(3.15), we obtain:

(e ® id®id)(p) = 0 = (id®id ®e)(p). (3.17)

(3.14) says that ¢ is a 3-cocycle in the complex (3.7). By Proposition 3.11 of
[1], if such a cocycle is g-invariant and satisfies (3.15)-(3.17) and the condition
Altp = 0, it can be represented in the form (3.12), and the representation is
unique up to the replacement (3.13). ®

Let 4 and .#° be as above. In the same way as for Proposition 3.2 one
proves the following,

ProPOSITION 3.3. Let (4 (1), A (7)) be an arbitrary k-universal solution
of equations (1.2), (1.4), and (1.6) such that A4 (1) is symmetric, /(1) =1+
/2 4 o(t). Then by twisting via a symmetric k-universal F(t) one can turn
(A (7)), # (7)) into (A (), A(T)), where T is expressed in terms of © by a
k-universal formula of the form T = v+ O(t). Furthermore, T is determined
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by (W, A7) uniquely, and F(t) up to multiplication by (u“l @ u™h) - Alu),
where u is expressed in terms of © by a k-universal formula of the form u =
1+0(1). ©

PROPOSITION 3.4. Let (. (1), # (1)) beas in Proposition 3.3. Then /(1) =

e?, where T is expressed in terms of T by means of a k-universal formula of
the form T =1 + o(1).

Proor. If R = e’”, where ¢ € g ® g is symmetric and g-invariant, and
F € (Ug® Ug)[[h]] is likewise symmetric and g-invariant, then in formula
(1.12) R = R, since [t, F] = 0 (it suffices to use the formula ¢ = (A(C) —
C®l-1®C)/2, where C € Ug is the Casimir element corresponding to 7).
The k-universal version of this assertion is also true: F (t)et" ’F ('r)_l = ¢"?
for any k-universal F(t). Therefore, applying Propoesition 3.3 to the case that
(1) =e™* and .# (1) is defined by means of the KZ system (see §2), we find
that A°(7) = e"? for some T of the form T+ o(t). It remains now to apply
Proposition 3.3 to an arbitrary pair (/ (1), #(1)). @

ProoF oF THEOREM A’. In the process of proving Proposition 3.1 we con-
structed Q-universal elements ® =.#(t) and R =.# (1) satisfying (1.1)-(1.6)
and the condition R*' = R, with A (1) =1+1/2+0(7) and £ (1) =1+0(7).
By Proposition 3.4, there exists a Q-universal T of the form 7+ o(r) such that
H(T) = e”’?. Then ® =.#(7) and R = e!? satisfy (1.1)-(1.6). Uniqueness
in Theorem A’ follows from Proposition 3.3. e

Theorem A’ implies the existence part of Theorem A. Uniqueness is a con-

- sequence of the following proposition.

PROPOSITION 3.5. Let g be a deformation algebra over k[[h]] (see §1), and
ReUg®@Ug and ® € Ug® Ug® Ug invertible g-invariant elements satisfying
(1.2), (1.4), and (1.6). Then by twisting via some g-invariant F € Ug® Ug

we can turn © and R into # (h8) and e"? where @ isa g-invariant element
of Sym2 g. Furthermore, F is uniquely determined up to multiplication by an
element of the form (u'l ® u_l) x A(u), where u belongs to the center of Ug
and u=1modh, &(u)=1.

ProoF. The proof is basically like the one given above (see Proposition
3.2) in the case g = gyl[#]], where g, is a Lie algebra over k. It differs in
the following respect. Suppose R =R, & = Jf(hﬁn)modh", and R =
exp(h8,/2) modh" for some g-invariant 6, € Sym®g. Let r and ¢ be the

residue classes mod/ of the elements A~"(R — exp(h6,/2)) and A" (@ —
4 (h#)), respectively. As in the proof of Proposition 3.2, one shows that r is

an invariant element of Sym2 g, , Where g, = g/hg, while ¢ can be represented
in the form (3.12), where f is a symmetric invariant element of Ug, ® Ug,
such that (e ®id)(f) = (id®&Jf) = 0. But to construct g-invariant symmetric
elements F, € Ug® Ug and 6,,, € g® g such that D= /{(hﬂ,m)modh"“
and R = exp(hf, /2)mc|dhﬂ+l ,-where ® and R are obtained by twisting
® and R via F,, we must still prove that r € Sym2 gy lifts to an invariant
element r € Sym2 g, while f € Symz(U g,) can be chosen so as to lift to an

—in

invariant element f € Symz(Ug). For r we can take z(h "(InR — 6/2)),
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where n: Ug® Ug — g® g is the projection defined by identification of Ug
with Sym”g (we are forced to use z, since it has not yet been proved that
InR € g®g). We claim that f exists if f is constructed as in the proof of
Proposition 3.11 of [1]. Indeed, if we identify Ug, with Sym® g, in the usual
fashion, then Ug,®Ug, is identified with Sym* (g @g,) = D, 56" ®5 (Q")®",
(Ugy)® with @, g5 ®g (@*)®" and the fconstructed in [1] is equal to
Ly(p), where L (Ugo)®3 — (Uga)‘g2 is defined by means of certain S, -
equivariant operators 4, : (@*®™ — (@*)®" . We can therefore put f=L(g),
where ¢ = h~"(®—.#(h0)), and L: (Ug)®® — (Ug)®* is defined by means of

the same Jm :

A similar problem arises in proving the uniqueness of F up to multiplication
by (u_l ® u_I)A(u) , and it is dealt with in the same way. ©

CoroLLARY, In the situation of Proposition 3.5, R¥R = ehﬂ, where 0 isa
g-invariant element of Syml g. In particular, if R =R, then R= el

REMARKS. 1) The corollary shows that if A is a universal enveloping algebra
with the usual A and e, then (1.1)~(1.6) imply the equality (A®id)(In(R*'R)) =
IJJ(R3 Lgld )+ ln(JR3 2R23). The author has not been able to derive this equality
directly from (1.1)-(1.6).

2) A proof similar to that of Proposition 3.5 can be made for an analogous
proposition concerning coboundary quasi-Hopf QUE-algebras in the sense of
§3 of [1].

Proor oF THEOREM B. Let (A4, A, ¢, @, R) be a quasitriangular quasi-Hopf
QUE-algebra over k[[#]]. Put R = R (RMR)“” 2. By Proposition 3.3 of
[11, (4, A, e, ®, R) is a coboundary quasi-Hopf QUE-algebra. Therefore, by
Proposition 3.13 of [1], a suitable twist turns (4, A, &) into Ug with the usual
comultiplication and counit, where g is a deformation Lie algebra. Now apply
Proposition 3.5. e

REMARKS. 1) Theorem B can be proved without the use of Proposition 3.5
by arguing as in the proof of Proposition 3.13 of [1].

2} A description can easily be made of the category of quasitriangular quasi-
Hopf QUE-algebras (Proposition 3.14 of [1] and its proof remain valid in the
quasitriangular case).

£4, The Grothendieck-Teichmiiller group

Suppose given a quasitensored category (see §1), i.e., a category C , a functor
®, commutativity and associativity isomorphisms, as well as an identity object
fc and isomorphisms ¥ ® k = V and k® V¥ = ¥V for all objects ¥ in C
(with diagrams (1.7)-(1.9) commutative). We try to change the commutativ-
ity and associativity isomorphisms without changing the rest of the structure
appearing in the definition of quasitensored category. Changing the associa-
tivity isomorphism (¥, ® V) ® V; = ¥, ® (V, ® V;) amounts to multiplying
it by an automorphism of (V/; ® V,) ® V. Observe thaton (V@ V)@V,
where V' is an object in C, there is an action of the braid group B,: the
generator o, € B, determines the isomorphism ¢ ® id, where ¢ is the com-
mutativity isomorphism ¥ ® V' = V' @ V', and the generator o, € B, deter-

mines the isomorphism a! (id®c)a, where a is the associativity isomorphism
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(VeV)eV = Ve(VeV). Inthe same way, every a € B, determines an iso-
morphism (¥,@V;)®V; = (le®Vi1)®Vx'3 , where (i, I, i;) is the permutation
corresponding to o~'. We have therefore on (V; ® ¥;) ® V; an action of the
colored-braid group K, = Ker(B; — §,). Thus, a choice of ¢ € K; determines
a mew associativity isomorphism. Similarly, a choice of y € K, determines a
m

, where

new commutativity isomorphism. Any ¥ € K, is of the form w=0o
g is the generator of B, and m € Z. Therefore changing the commutativity

isomorphism amounts to raising it to the power A=2m+1. Any p € K, is
of the form f(af, 022) : (0‘10'2)3" , where n € Z and f(X,Y) is an element of
the free group with generators X, Y (we note that (0'10'2)3 = (0201)3 gener-
ates the center of B;). For new commutativity and associativity isomorphisms
the diagrams of the form (1.8) remain commutative as before, but the require-
ment of commutativity for (1.7) and (1.9) imposes conditions on f,A,and n.
Commutativity of (1.9a) imposes the condition 1 = 0 and the relation

S, X)X FXy, X)X (X, X)Xy =1
for X X,X;=1, m=(@aA-1)/2. (4.1)
Commutativity of (1.9b) imposes also the condition n =10 and the relation

£y, X)X (X, X)X (X, X)X =1
for X, X,X,=1, m=@-1)/2. (42)

(4.1) and (4.2) are equivalent to the relations
[T, X=X, 17, (4.3)

F(Xy, X)X f(Xy, X)Xy f(X, X)X =1

for X X,X,=1, m=(A- 1)/2. (4.4)

Finally, commutativity of (1.7) imposes the following condition on ¢ € K :
85(p) - 0,(p) = By(9) - ,(0) - By (@). (4.5)
Here 8y(p) (resp. 0,(p)) is obtained from the braid ¢ by adding one more
string on the left (resp. right) to the existent three, while 8,(¢) for 1 <i<3 is
obtained from ¢ by replacing the ith string of the braid ¢ by two strings, one
just to the left of the other (note that the K, form a cosimplicial group, where
the boundary homomorphisms are the 9 K, — K,.,, while the degeneracy
homomorphisms K, , — K, are obtained by deleting one of the n+1 strings).
It is known [20] that K is generated by the elements X, l<i<j<mn,

where

; ~l(4.6)

12
0, 20,5 o) = (05, 0,001 (05 e G)

xij = {Gj—l p— Gf)
and the defininig relations ag.ong the x;; are of the form
(@5 Xi5) = (@10 Xy = (@ Xp) = 1
where [ < J <k, Qi = XXX i » (4.7)
(x5 X)) = (xy, xp) =1 fori< j<k<d, (4.8)

(e x5 xyx) =1 fori<j<k<l (4.9)
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Here (#,v) means wvu "y
S (X155 Xy3%0) f(X13%55 5 Xyy)
= f(Xp3s X30) S (X107 35 X9 X30) f (X5, Xp3)- (4.10)

Thus, every pair (A, f), A € 1+ 2Z, satisfying (4.3), (4.4), and (4.10)
determines a natural” way of constructmg for any quasitensored category C a
new quasitensored category C', where the only change is in the commutatwlty
and associativity 1somorph1sms (“natural” means that if F: C;, — C, is a ten-
sored functor in the sense of Definition 1.8 of [6], then F isa tensored functor
from C; to Cé) . It is easily shown that the correspondence is bijective. The
interpretation of the pairs (4, f) satisfying (4.3), (4.4), and (4.10) as ways of
changing the commutativity and associativity isomorphisms allows us to define
on the set of all such pairs a semigroup structure (4, f}) - (4,, f,) = (4, /),
where

. In terms of the Xij (4.5) says that

A=22,,
fX, )= (X, DX 4, 1), 7). X, 7).

Now suppose (4, A, g, @, R) satisfies (1.1)~(1.6). Then the A-modules
form a guasitensored category (see §1). If we change the commutativity and
associativity isomorphisms by means of a pair (4, /) satisfying (4.3), (4.4),
and (4.10), where

R=R-(R21 -R)m=(R-R21)m

(4.11)

m=(A-1)/2, (4.12a)

b= q)-f(RZIRu, (I)“lR'uRB(I))
= f(@R" R~ , R*R®)  ®. (4.12b)

The formulas (4.12) define an action of the semigroup of all pairs (4, f) satis-
fying (4.3), (4.4), and (4.10) on the collection of sets (A4, A, &, @, R) satisfying
(1.1)—(1.6). Unfortunately, this semigroup consists only of the identity element
(A=1, f=1) and the involution (4 = —1, f = 1) taking (4,A, e, ®, R)
into (4,A,¢g,®, (Rzl)“l). This is a consequence of the following proposi-
tion, since by (4.10) f(X, Y) belongs to the commutant of the free group with
generators X, Y.

PROPOSITION 4.1. Equations (4.3) and (4.4), where f(X,Y) belongs to the
Jree group with generators X and Y, are satisfied only by A =%1, f(X,Y) =
Y'X—.

Proor. If (/1 J[) satisfies equations (4.3) and (4.4), then these are also sat-
isfied by (4, f) where f(X Y)=Y"f(X, Y)X'. From (4.3) it follows that
for a suitable s e1ther f =1 or the noncancellable representation of f (X,7Y)
is of the form X'. [ #£ 0. Since f satisfies (4.4), the second case is
impossible, and in the ﬁrst case A=41. o

Observe now that if & is a field of characteristic 0, then formulas (4.3), (4.4),
(4.10), and (4.11) are meaningful even if we suppose that A € k, while f(X, ¥)
belongs to the k-pro-unipotent completion of the free group with generators
X,Y,ie, f(X,Y) is a formal expression of the form expF(InX,InY),
where F is a Lie formal series over k. Then both sides of (4.10) belong
to the k-pro-unipotent completion of K, i.e., are of the form e", where v

N S ¥ S

e

ﬁ
4
%
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belongs to the quotient algebra of Lie formal series in the variables ¢, i 1
i < j <4 modulo the ideal corresponding to the relations (4.7)-(4.9) for x;;
exp¢; i

We denote by GT(k) the semigroup of pairs (A, f) satisfying (4.3), (4.4),
and (4.10), where A € k and f belongs to the k-pro-unipotent completion of
the free group. The group of invertible elements of GT(k) will be denoted by
GT(k); we call it the k-pro-unipotent version of the Grothendieck-Teichmiiller
group. It is easily seen that GT(k) = {(4, f) e GT(k) | A # 0}. It turns out
(see §§5, 6) that the group GT(k) is rather large: it is infinite-dimensional, and
thé homomorphism GT(k) — k* taking (4, f) to 4 is surjective.

If (4, /) € GT(k) and (4,4,¢, ®, R) is a quasitriangular quasi-Hopf
QUE-algebra over k[[4]], then the formulas (4.12) are meaningful. Thus,
GT(k) acts on the set of quasitriangular quasi-Hopf QUE-algebras. A twist
(see (1.10)=(1.12)) commutes with the action of GT(k). Suppose now that A4
is Ug with the usual comultiplication, R = ¢"/* and @ = exp P(ht'?, ht?),
where g is a deformation Lie algebra over k[[k]], t € g® g is symmetric and
g-invariant, and P is a Lie formal series over k. Then the R and @ defined
by formulas (4.12) are of the form R = M2 and @ = exp P(ht'?, h”?),
where P is'a Lie formal series over k.

We can interpret the elements of GT(k) as endomorphisms of a certain
completion B, (k) of the group B,. Suppose 4, f satisfy (4.3), (4.4), and
(4.10), with 4 € 1+ 2Z and f(X,Y) belonging to the free group on the
generators X, Y (forget that there are only two such pairs (1, f)). Let ¥ bean
object in a quasitensored category C, vl =veV, & — y®2g ¥, etc. On
v®" there is an action of B,. Changing the commutativity and associativity
isomorphisms in C by means of (4, f) gives rise to a new action of B, on
7®" It is obtained from the old by composition with the endomorphism of
B, given by g, — crf‘, g, — fy;, criz)_laff(yi, a’f) for i > 1, where y,; =
O;_y 0y T 0y (in the notation of (4.6), ¥, = Xy Xyt Xy ) e Now let
K (k) be the k-pro-unipotent completion of K, and B, (k) the quotient of
the semidirect product of B, and K, (k) (the automorphisms Ad g: K, — K,

g € B, ,extend to K, (k)) modulo the subgroup of elements of the form By
x € K, , where x is regarded as an element of B, , and x~' as an element of
K, (k). The formulas

<

A 2,— A 2 ,
oo™, o S, o) e W 0), 1<ign, (413)

3

where crfl) =0;" (UI.Z)(A””"2 s Y= Oy OO Oy define a right action of
GT(k) on B, (k), which is faithful for # > 3. The endomorphisms (4.13) are
compatible with the imbeddings B, (k) — B, +1(k) that take o; into g;, and
they induce the identity automorphisms on the groups S, = B, (k)/K 4k} The
author does not know whetlier any set of automorphisms y, € Aut B, (k) that
has these properties results from an element of GT(k) (perhaps the methods
of [15] can elucidate this). In any case, the endomorphisms of B,(k) that take

g, into af’l} and induce the identity automorphism on S; do have the form
(4.13) or, what is equivalent, the form

s I(A=1)2 5 2 2
o, — al( ), G,0,0, = G,0,0, [{o,0,) ]( " flog,a3), (4.14)
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where [ satisfies (4.3) and (4.4). Conversely, (4.3) and (4.4) imply that (4.14)
defines an endomorphism of B,(k).

We describe now, following [2], how to construct a canonical homomorphism

Gal(Q/Q) — GT(Q,), where @ is the algebraic closure of @ in C (although
this construction will not be used in the sequel). Let us denote by @ (resp.
GT,) the semigroup of all pairs (4, f) satisfying:(4.3), (4.4), and (4.10), where
f belongs to the pro-finite completion (resp. pro-/-completion) of the free
group, and A € 1+ 2Z (resp. A € 1+ 2Z;). Here Z = Eil_nnZ/nZ. The

groups of invertible elements in 6_’?_ and GT, we denote by GT and GT,.
There exist natural homomorphisms GT — GT, and GT, — GT(Q,). What
remains is to construct a homomorphism Gal(Q/Q) — GT. Let us first recall
the construction, due to Belyi [21], of a homomorphism Gal(Q@/Q) — AutT,
where T is the quotient of B, by its center, and T" is the pro-finite completion
of T'. There exists a canonical isomorphism I' = z,(M, x), where M is the
stack which is the quotient of CcP! - {0, 1, oo} by the group S, of projective
transformations permuting 0, 1, co, and x is the image of a point in CP! that

lies on the real axis near 0. Therefore T = Gal(F/E) where E is the subfield
of Sj-invariants in @(z) (S, acts on z as indicated above), and F is the

maximal algebraic extension of Q(z) in L = |J, Q((z'/")) that is unramified
outside 0, 1, co. The group Gal(Q/Q) actson L, leaving E and F invariant.

Therefore Gal(Q/Q) acts on Gal(F/E) = ['. The subgroup H c T that is
topologically generated by the image of o, € B, is invariant with respect to

Gal(@/Q), and the action of Gal(Q/Q) on the quotient group S, of T is the

identity. The semigroup of endomorphisms g: I' - T such that p(HYC H
and the action of @ on §, is the identity is anti-isomorphic to the semigroup

of pairs (4, f) satisfying (4.3) and (4.4), where A € 1 +2Z and f belongs to
the pro-finite completion of the free group: the pair (1, f) corresponds (see
(4.14)) to the endomorphism ¢: T' — T such that ¢(7,) = 7, 7(7,7,7,) =
G,0,0,f (ET, Eﬁ_) , where @, is the image of g, in I'. To obtain an isomorphism
between the groups of invertible elements of the two semigroups, combine the
antihomomorphism with the mapping y — y"1

It remains to show that the pairs (A, f) corresponding to elements of
Gal(Q/Q) satisfy (4.10). This can be inferred from §2 of Grothendieck [2].
It is proposed in [2] to consider, for any g and v, the “Teichmiiller groupoid”
Tg, i.e., the fundamental groupoid of the module stack M iy of compact Rie-
mann surfaces X of genus g with v distinguished points x,, ..., x,. The
fundamental groupoid differs from the fundamental group in that we choose
not one, but several distinguished points. In the present case it is convenient
to choose the distinguished points “at infinity” (see §15 of [11]) in accordance
with the methods of “maximal degeneration” of the set (X, x,, ..., x,). Since
degeneration of the set (X, x,, ..., x,) results in decreasing g and v, the

groupoids T for different g and ; are connected by certain homomor—

phisms. The collectlon of all T, , and all such homomorphisms is called in

[2] the Teichmiiller tower. It is observed in [2] that there exists a natural ho-
momorphism Gal(Q/Q) — G, where G is the group of automorphisms of the
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pro-finite analogue of the Teichmiiller tower (in which T, , is replaced by its
pro-finite completion Tg, ). It is also stated in [2], as a plausible conjecture,
that 7 4 and T, , in a definite sense generate the whole tower {Tg,u} and
that all relations between generators of the tower come from T ,, T Ty 5»
and T1,2- This conjecture has been proved, apparently, in Appendix B of
the physics paper [22]. In any case, it is easily seen that Tu,z: generates the
subtower {Tﬂ,u} , and that all relations in {Tﬂ,u} come from TD’ 4, and Tn,s-
It can be shown that GT is the automorphism group of the tower {Tu,u}-
Indefd, an automgrphism of this tower is uniquely determined by its action
on Ty 4, i.e., on I . This action is described by a pair (A, f) satisfying (4.3)
and (4.4), and (4.10) is necessary and sufficient for the automorphism of Ta, "
to extend to one of fo,s- Grothendieck’s conjecture implies that the group
of automorphisms of the tower {Tg,u} that are compatible with the natural
homomorphism To, g Tl 0 (to a quadruple of points on P! is assigned the
double covering ofAIP’1 ramified at these pgints) is also equal to GT: if an
automorphism of To 4 extends to one of To,s , then it also extends to one of
Tl 2 since, as noted in [2], M| , is almost the same as M| ;.

The homomorphism Gal(Q/Q) — GT is, by Belyi’s theorem [21], injective.
The study of the kernel and image of the homomorphism Gal(Q/Q) — GT, has
been dealt with by a number of papers (see [11]-[14] and the literature cited
there).

§5. Proof of Theorem A"

Let k be a field of characteristic 0, fr,(4, B) the algebra of Lie formal
series over k in the variables 4 and B (fr is short for “free”), Fr (4, B) =
expfr,(4, B) and M, (k) theset of p € Fr (4, B) satisfying (2.13) and (2.14),
where B N . ;

xV=x", [X",X"1=0 fori#j#r#l, (5.1)
XY+ X", x"1=0 fori#j#r
Let uﬁ be the completion (with respect to the natural grading) of the Lie algebra
over k with generators X7, 1 <i<n, 1 <j<n, i#]j,and defining
relations (5.1). For n > 3 the algebras u: are not free, but they reduce to

free ones: uﬁ is the semidirect product of a:f_l and the topologically free

algebra generated by the X, , 1 <i<n—1 (thelatter is an ideal in a':) . For
n = 3 there is a more convenient realization: a’; is the direct sum of its center,
generated by the element X 12 L ¥V 4 x?, and the topologically free algebra
generated by X 12 and X2 *Therefore (2.14a) is equivalent to two equalities,
one of which is obtained by substituting X 2-4,XxX7=B,X B~ _4-B and
the other by substituting X 12 _ ¥? = 0. The second equality is a tautology,
and the first is of the form

eAﬁqa(C, A}ec"qu(C’, B)_!eE’ng(A, By=1, (5.22)

where 4+ B+ C =0,



848 V. G. DRINFEL'D

Similarly, (2.14b) is equivalent to the equality

o(B, 4) e Pp(C, 9 p(C, B)
where A4+ B+ C =0,

obtained by substituting %=, X3 = B, x"=4. (5.2a) and (5.2b)
imply (2.12). On the other hand, if (2.12) hdids, then (5.2a) and (5.2b) are
equivalent to the equality

e*Pp(C, 4)ep(B, C)e"p(4, B) =1, (5.3)
where A+ B + C =0.

Thus, M, (k) is the set of p € Fr (4, B) satisfying (2.12), (5.3), and (2.13).
Let M#(k) be the set of ¢ € Fr (4, B) satisfying (2.12), (2.13), and the equa-
tion obtained from (5.3) by replacing e”/?, e/2, ¢©/% by ¢*4/?, e#B/2 oHC/2,
Put M(k) = {(u,9) | 1 € k, 9 € M,(k)} and M(k) = {(1, p) € M(k) |
##0}. On M(k) there is an action of GT(k): an element (4, f) € GT(k)
takes (u, p)eM(k) into (Ap, ), where B(d, B)=f(p(d4,B)ep(4,B)™", €”)
x @(A, B) (cf. (4.12)).

ProrosiTiON 5.1. The action of GT(k) on M(k) is free and transitive.

Proor. If (u, @) € M(k) and (@, ®) € M(k), then there is exactly one
f such that §(4, B) = f(e(4, B)e?p(4, B)™", ®). 9(4, B). We need to
show that (A, f) € GT(k), where A = Zi/u. We prove (4.10). Let G, be the
semidirect product of S, and exp uﬁ. Consider the homomorphism B, — G,
that takes o, into

-1 _Bj2 _
e =1 (5.2b)

. i s . _ . i, 041 \ ;i .,
@(X“-l—----%X’ E,J’X!,H-l) Iax,:+le,uX /Zw(Xlr_'_”__'_Xt l.t’X:,rH)’
where ¢” € S, transposes i and j. It induces a homomorphism 'Kn — EXP a:,

and therefore a homomorphism «,: K, (k) — exp a];, where K, (k) is the k-
pro-unipotent completion of K, . It is easily shown that the left- and right-hand

sides of (4.10) have the same images in exp a': . It remains to prove that ¢, isan
isomorphism. The algebra Lie K, (k) is topologically generated by the elements
¢;» 1 £ i < j < n, with defining relations obtained from (4.7)-(4.9) by
substituting x; ; =expg;;. The principal parts of these relations are the same as

in (5.1), while (,),(¢;;) = X"+ {lower terms}, where (,),: Lie K, (k) — uf
is induced by the homomorphism «, . Therefore o, is an isomorphism, i.e.,
(4.10) is proved. (4.3) is obvious. To prove (4.4), we can interpret it in terms
of K, and argue as in the proof of (4.10), or, what is equivalent, make the
substitution

X, =¢", X,=e"p(B, ) p(B, 4)7 e, (54)

X, =0(C, A)ep(C, 47",

where A+ B+C=0. ©

Identifying M (k) with the quotient of AM(k) by the natural action of
k* (c € k" takes (u, @) into (cu, §), where §(4, B) = p(cA, cB)), we
obtain an action of GT(k) on M, (k). Proposition 5.1 says that the subgroup
GT,(k)={(4, f) e GT(k) | A= 1} acts on M (k) freely and transitively; and

if M(k)+# @, the
v(id, f)=21,isexa
6,: k' — GT(k) su
GT(k).
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if M, (k) # @, then the sequence 1 — GT,(k) — GT(k) & k" — 1, where
v(A, f) = A, is exact and to every ¢ € M, (k) corresponds a homomorphism
g,: k" — GT(k) such that v o6, =id, while 8,(k") is the stabilizer of ¢ in

GT(k).

Denote the Lie algebras of the pro-algebraic groups GT(k) and GT,(k) by
gt(k) and gt (k). Substituting f(X,Y)=cxpey(lnX,InY) and A=1+es
into (4.3), (4.4), and (4.10), and linearizing with respect to &, we find that gt(k)
consists of the pairs (s, w), s€k, v € fr,(a, B), such that

wia, B)=-w(B,a), (5.5)

s
wia, B+ w(B, )+ (¥, a)+ 5@+ f+7)=0, (5.6)
where e“efe’ =1,
W(‘Eu ’ éz3 * 624) o '!/(513 * éz;; ) 634)
= W(Eyyr Ea) + W(E 5 #&yas Epy ¥ Eay) T W (6125 G- (5.7)
Here u+v = In(e"e”), and the &, i satisfy the relations obtained from (4.7)-
(4.9) by substituting x;; = exp¢;;. A commutator in gt(k) has the form
(s> Wy)s (85, Wo)l = (0, ), where ¥ = [, ¥,] + 5,D(¥,) — 5, D(y) +
D%(u/l) —le(yfz), with D and D, derivations of ft,(a, f) such that D(a)
=a, D(B) =8, D,(a) =1y, c],and D, () =0.
If M,(k)# @, then the sequence

0 — gty (k) — gt(k) Sk =0,  w(s,¥)=s, (5.8)
is exact, and to every ¢ € M, (k) corresponds a splitting, defined by the Lie
algebra of the stabilizer of ¢ in GT(k).

PROPOSITION 5.2. The mapping M, (k) — {splittings of the sequence (5.8)} is
bijective. In particular, exactness of (5.8) implies that M, (k) #@.

ProoF. The mapping takes ¢ € M, (k) into the splitting defined by the
element (1, y) € gt(k), where w is found from the condition

p(A, B L ptd, tB)|, ., = w4, o(4, BY 'Bo(4, B).  (59)

Given ¥, there exists exactly one ¢ € Fr (4, B) satisfying (5.9). In view
of (5.5), (5.9) remains valid if ¢(4, B) is replaced by ¢(B, A)_l . Therefore
p(A, B) = ¢(B, A)"l . We prove (5.3). Denote the left-hand side of (5.3) by
Q(A, B). Then
0(4, By Lo, 1B)|
? dt A J =1

(5.10)

2

v, B+ u(B.T) +y(C, D+ EETEE
where |
A=0(4,B)'40(4,B), B=p(4,B) Bp(4,B),
C=o(d, By e ?*pB, C)"'Co(B, C)e"p(4, B).
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Suppose we have already proved that Q(A4, B) = I moddegn (i.e., Q(4, B) =
1+ terms of degree n and higher). If Q(4, B)=1+4g(4, B)moddeg(n+1),
where g is homogeneous of degree 7, then the left-hand side of (5.10) is con-

gruent to n-g(A, B) mod deg(n+1). Since ePe€ = e 1204, C)e™**Q(4, B),

we find, denoting by o, f, and y the residue classes of 4, B — q(4, B),
and C - g(4, C)moddeg(n + 1), that e®e’e = 1. Therefore (5.6) holds,
with s = 1. Hence the right-hand side of (5.10) is congruent to g(4, B) +
g(A, C)moddeg(n + 1). From the definition of @ it follows that g(4, C) =
qg(B, A). Thus, g(B, A) =(n—-1)-g(4, B). Therefore, g =0 (for n =2,
this follows from the fact that g(A4, B) is a Lie polynomial and therefore pro-
portional to [4, B]).

It remains to prove (2.13). Denote the left-hand side of (2.13) by [, and the
right by g. Suppose we have already proved that f = gmoddegn. To prove
that f = gmoddeg(n + 1), it suffices to show that

2, 1B, '-%f(zX”,tX”’,...)L:!
=g(x, x", .. %g(tk’u, tx,...)|_, moddeg(n+1),

i.e., that
wia, B)+w(y,d0)=w(d,d)+y(u, v)+w(e, ) moddeg(n+1), (5.11)
where

» :XIB +X23
34)

CE=X12, ﬁ=f—i.(X23+X24)'f’

5= (D(X13+X23, X34)-—1 'X34§0(X13+X23, X
/].=§0(X12, XZB)—IXB!;D(XJZ,XB),

'u={D(Xll,-XZS)—l(XIZ+XI3)¢(X12,XZJ),

- =¢J(X12, X23)—1¢(X12+X!3: X24+X34)—1
” (X24+X34)(0(X12+Xl3, X24+X34)§0(X12, XH).

Using (2.12), (5.3), and the congruence f = gmoddegn, we construct (see
the proof of Proposition 5.1) a homomorphism A: K, (k) — exp(af; /1), where
I={ac af | @ = Omoddeg(n + 1)}. Then in (5.7) putting ¢;; = InA(x;;),
where the x;; are defined by (4.6), we obtain (5.11). e

ProrosiTION 5.3. M (k) #@.

Proor. Since M,(C) # @ (see §2), the sequence (5.8) is exact for k = C.
This implies (5.8) is exact for k = Q. Therefore M,(Q) # @ (see Proposition
5.2) and, so much the more, M, (k) # @ . Another version of the proof: since
the composite of the homomorphism Gal(Q/Q) — GT(Q;) (see §4) and the
homomorphism »: GT(Q,) — Q; is the homomorphism f: Gal(Q/Q) — Z;
defined by the relation ¢~ ' ({) = ) where C’n=1 , 0 € Gal(Q/Q), it follows
that the image of v is infinite, the sequence (5.8) is exact for k =Q,, etc. ©

Thus, Theorem A" (see §1) is proved.
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PROPOSITION 5.4. The set M, (k) ={p € M, (k)| o(—4, —B) = p(4, B)} is
nonempty. It is acted on by the group GT (k) = {(A, f) e GT(k) | f(X_l . Y‘l)
= f(X,Y)}, and the action on M; (k) by the subgroup GT" (k) nGT,(k) is
free and transitive.

PROOF. Mf('k) is the set of g-invariant elements of M, (k), where g €
GT{(k) is the involution corresponding to A = —1, f = 1. Since (5.8) has a
g-invariant splitting, we have M, (k) # @. The rest is obvious.

REMARK. @, (—A, —B) # @y, (A4, B) (see (2.15), (2.17), or (2.18)).

_The above proof of Proposition 5.3 is nonconstructive. Our next objective is
to prove Proposition 5.8, which will show that constructing elements of M, (k)
by successive approximations presents no problems. For this we introduce the
following modification GRT(k) of the group GT(k). We denote by GRT, (k)
the set of all g € Fr; (4, B) such that

g(B, A)=g(4,B)", (5.12)
g(C, A)g(B,C)g(d,B)=1 forA+B+C=0, (5.13)
A+g(4,B) 'Bg(4,B)+g(4,C)'Cgl4,O)=0 (5,

forA+B+C =0,

g(XlZ, X23+X24)g(X13+X23, X“)
=g(X23, X34)g(X12+X13, X24+X34)g(X12, X23), (5.15)

where the X"/ satisfy (5.1). GRT,(k) is a group with the operation
(8, 08,)(A4, B) = 8,(8,(4, B)dgy(4, B)”', B)- g,(4, B). (5.16)

On GRT,(k) there is an action of k", givenby g(4, B) = g(c"lA, ¢ 'B), ce
k™ . The semidirect product of k* and GRT, (k) we denote by GRT(k). The
Lie algebra grt, (k) of the group GRT, (k) consists of the series w € fr,(4, B)
such that
w(C,A+wB,C)+wy(d4,B)=0 ford+B+C =0, (5.18)
[B, w(d, B)]+[C, w(d,C)]=0 ford+B+C=0, (5.19)

y/(Xu,X23+X24)+w(Xls—i—XB, X34)
_ W(XZJ: X34)+W(X12+X13, X24+X34)+w(X12,X23), (5.20)

where the X"/ satisfy (5.1). A commutator { , ) in grt,(k) is of the form
(w5 wa) 51wy, w1+ Dy, (1) -D, (va); (5.21)
where [y, ¥,] is the commutator in fr,(4, B) and D, is the derivation of
fr.(4, B) given by DW(A) = [w, 4], DW(B) = 0. The algebra get,(k) is
graded, and the Lie algebra grt(k) of the group GRT(k) is the semidirect

sum of the 1-dimensional algebra k and grt,(k), where k acts on gzt (k) as
follows: 1 € k takes a homogeneous element ¥ € grt, (k) of degree n into

—ny.
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REMARKS. 1) gt, (k) has the filtration whose nth term is {(0, ) € gt, (k) |
w = Omoddegn}. We can use it to construct a complete graded Lie algebra
grgt, (k). It will be shown (see Proposition 5.6) that grgt (k) = grt, (k). This
is the reason for the notations grt, GRT. It is not hard to prove the inclusion
g'i"gtl(k) = grt (k): (5.19) follows from the fact that (e, B)—e *w(a, B)e’ +
ey(a, y)e”’ —p(a, y) =0, where (0, ) € gt{k), e%e ﬁ Y= 1. This in turn
follows from the analogues fact about GT, (k): if (1, f) € GT,(k), then

X, f(X,, X)X X) - F(X, X)X (X Xy)
= X [(Xy, X)X, (X3, X)) X3 /(X5 Xy)
=f(X,, X)X, 4,) f(X[,X)=1

for X, X,X, = 1, where X —XXX_1 = X5 XX However it is not
necessary for (5; 19) to be venﬁed (see Prop051t10n 5. 7)

2) The connection between GT, (k) and GRT,(k) can also be explained
in the following way: if {g,} is a famﬂy of elements of Fr, (4, B) such that
(1, f,) € GT, (k) for & # 0, where f,(X,Y) = g,(¢"'InX, e ' InY), then
g, € GRT, (k).

3) GRT,(k), as well as GT(k), has a categorical interpretation. Let C be
a tensored category, and suppose given automorphisms Ty w € Aut(V e W),
functorial in V', W € C, with ¢, Ty =Ty €y y and

I Tygy w=idy®InTy, 4+ (cy, ®id)(id, ®Inty 4)ey , ®id),

where ¢ is the commutativity isomorphism (of course, one must first have
formulated conditions on C and 7 sufficient for the latter equality to be
meaningful; typical example: C is the category of h-adically complete Ug-
modules, and 7, is the operator in V' ® W corresponding to teU g®Ug,
where g and ¢ are as in §1). Suppose meaningful all expresions of the form
g(lnty, , ®idy,,id, ®In7), ), where g(A,B) e Fr (4, B). Thenif g €
GRT, (k) and we take g(lnt, , ®idy,, id; ®Inz, ;) as a new associativity
isomorphism (U® V)® W = U ® (V ® W) without changing ¢ and 1, we
obtain a structure of the same type as the original.

The formula @(A4, B) = p(g(A4, B)Ag(A, B‘)”1 , B)-g(A, B), where ¢ €
M#(k) and g € GRT|(k), defines a right action of GRT, (k) on M#(k). This
gives GRT, (k) a right action on M(k) ={(u, ) |p € M#(k)}. The formulas
@{A4d, B) = ga(c_[A, c_lB) and [ = c_l,u, where ¢ € k”, define an action of
k* on M(k). As a result, we obtain a right action of GRT(k) on M(k). It
commutes with the left action of GT(k).

ProPOSITION 5.5. The action of GRT(k) on M (k) is free and transitive. The
same is true for the action of GRT (k) on M, (k).

Proor. It suffices to prove the second statement. If ¢, ¥ € M| (k) then there
exists exactly one g €Fr, (4, B) such that ¥(4,B) = qa(g(A,B)Ag(A,B)_l, B)
x g{A, B); namely,

g(4, B)=x(p(4, B)Ap(4, B)™', B) - 7(4, B), (5.22)
where y € Fr (4, B) is inverse to ¢ with respect to the operation (5.16),
ie., x(p(d, B)Ap(A, B)_l s B) - p(A,B) = 1. Arguing as in the proof of

——
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Proposition 5.1, we find that (0, /) € GT(k), where f(X,Y) = y(InX,InY).
Equation (5.22) says that g is the result of the action of (0, f) on 7, and
therefore g € My(k), i.e., g satisfies (5.12), (5.13), and (5.15). We now use

the equality

X, + X2 f0x,, X)X, - £, X)X

+ (X, X)) InX, - f(X, X)) =0, (5.23)
where X, X,X,; =1, proved by the substitution (5.4). Finally, making a substi-
tution like {5.4) in (5.23) with ¢ replaced by @, and using (5.22), we obtain
(5.14). e

From Propositions 5.1 and 5.5 follows
PROPOSITION 5.6. Every ¢ € M(k) determines an isomorphism s,,: GRT(k)

= GT(k), which is characterized by the fact that say y € GRT(k) actson ¢ on
the right the same way sm(y) acts on the left. The diagram

GRT(k) 5 GT(k)
N &
k*
is commutative, so that sﬂ(GRTl(k)) = GT, (k). The splitting of the sequence
(5.8) that corresponds to ¢ € M, (k) is defined by the homomorphism s o1 k' —

GT(k), where i is the canonical imbedding k™ — GRT(k). Finally, grgt, (k) =
get,(k), and if ¢ € M, (k), then s, induces the identity mapping grt (k) —

grgt, (k).
PROPOSITION 5.7. (5.17), (5.18), and (5.20) imply (5.19).

Prook. Denote the left-hand side of (5.19) by s(B, C). Then s(B, C) =
s(C, B). Furthermore,

(Y, ) =s(¥,, Y+ ;) +5(Y, + 1, ;) =s(¥,, ¥;) =0, (5.24)

where the ¥, are generators of the free Lie algebra. Indeed, denote the left-hand
side of (5.24) by u(Y,, Y;, 13). Then it follows from (5.17) and (5.18) that
u(XM, Xy = [X14+X24+X34, ;11234]—[XM+X24, p1243]+[X14, 2143
where u'?** = {left-hand side of (5.20)} — {right-hand side of (5.20)}. There-
fore (5.17), (5.18), and (5.20) imply (5.24). It remains to prove that if a sym-
metric Lie polynomial s(B, C) satisfies (5.24), then s = 0. It is well known
that if s(x, ¥) is an ordinary (commutative) polynomial in two sets of variables
x=, ., 2y and y = Y, ..., y") such that s(y, x) = s(x, y) and
(5.24) holds, then s is of the form f(x+y)—f(x)-/(»). This can be seen (see
the proof of Proposition 2.2%f [1]) by representing the space of homogeneous
polynomials s(x, y) of degree n in the form V, ®s W, , where ¥, is the
space of polynomials in x, = (x{l), \ x{")), v 3 Wy 5 s x,(:)) , lin-
ear in each x;,and W, isan appropriate §, -module. The same argument goes
through in the Lie case (for ¥ we must take the space of all Lie polynomials
in m variables, linear in each variable); but now f(x) is a Lie polynomial in
x,1e, f(x)=cx, c€k. Therefore s=0. @
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Put fe{’(4, B) = ft,(4, B)/I, where I, = {u € fe,(4,B8)| u=0moddegr}.
Let Frg)(A, B) = exp frgc)(A, B),and M{"(k) bethesetofall ¢ € Fr\)(4, B)
satisfying (2.12), (5.3), and (2.13) moddegr.

PROPOSITION 5.8. The mapping MV (k) — M (k) is surjective.

Proor. Similarly to GRT, (k) we consider tI‘JTE'ra group GRT([) (k), consisting
of all elements g € Fri''(4, B) satisfying (5.12)=(5.15) moddegn . Similarly
to Proposition 5.5 we can prove that GRT(ir)(ic) actson M. f')(k) freely and tran-
sitively. Tt remains to prove that the homomorphism GRT{*"(k) — GRTV (k)
is surjective. Since both groups are unipotent and therefore connected, it suf-
fices to prove surjectivity for the homomorphism gttg””(k) — grtg")(k). And
in fact, from Proposition 5.7 it follows that gttﬁ” (k) is the sum of the homo-
geneous components of get,(k) of degree less than r. @

REMARKS, 1) Any ¢ € Ml(’)(k) such that ¢p(—A, —B) = p(A4, B) can be
lifted to a 7 € M""V(k) such that @(—4, —B) = §(4, B) : it suffices to put
?(A, B) = (¢(4, B) +@(—A4, —B))/2, where @ is any inverse image of ¢ in
M(r+l)( k).

2) The proof of Proposition 5.8 uses Proposition 5.3. Without using Propo-
sition 5.3, one can show, by standard methods of deformation theory, that the
obstruction to the existence, for a given ¢ € Ml(’) (k), of an inverse image in
Ml(’“)(k) belongs to the rth component of the 4th cohomology group of the
following complex L*. Consider first a complex L*, where L" is the algebraic
direct sum of the homogeneous components of uﬁ , and the differential in L"
is such that for any Lie k-algebra g and any symmetric invariant { € g® g the
homomorphisms af — (Ug)®” taking X” into ¢/ define a morphism from
L" to the complex C (g) (see (3.7)). C"(g) contains the Harrison-Barr sub-
complex C'(g) (8 C"(g) is the free Lie superalgebra generated by the vector
space Ug, whose elements are regarded as odd, while @, C "(g) is a free as-
sociative algebra). In [23] a projection e, € Q[S,] is constructed such that
C'(g) = e, - C"(g); namely, e, = (n!)"' 3 &(o)c, - o, where o €., , &(0) is
the sign of ¢, and ¢, = (~1)°al(n—1-a)!, a = Card{k | a~' (k) > o~ ' (k+1)}.
The desired complex L" is defined by the formula L" = e, - L". The author
does not know whether its 4th cohomology group H* is equal to 0. It is easily
seen that H" = L" = 0 for n < 2, dimH”> = diimL* = 1, and H’ is the
algebraic direct sum of the homogeneous components of grt, (k).

PROPOSITION 5.9. (5.12), (5.13), and (5.15) imply (5.14). In other words,
GRT, (k) = My(k).

Proor. It suffices to show that if ¢ € My(k), ¢ = I moddegn, then the
result of acting on ¢ by some g € GRT,(k), where g = I moddegn, is
congruent to 1 moddeg{n + 1). Indeed, let y be the component of degree n
of the series Ing € fr, (4, B). Then  satisfies (5.17), (5.18), and (5.20), and
therefore also (5.19), i.e., ¥ € gtt, (k). We can therefore put g = Exp(-v),
where Exp is the exponential mapping grt, (k) — GRT, (k) corresponding to
the operation (5.16).
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REMARKS. 1) With the aid of Proposition 5.9 or its method of proof, it is
easy to obtain a proof of Proposition 5.5 simpler than the one above, but using

Proposition 5.7.
2) Here is an outline of another proof of Proposition 5.2. Denote by Spl(k)

the set of homomorphisms k — gt(k) that split (5.8). Put GTy(k) = {(4, f) €
GT(k) | A =0} and ﬂg(k) = {(0, /) € GTy(k) | f satisfies (5.23)}. In the
process of proving Proposition 5.5 we constructed a mapping M, (k) — GT;,(k) .
Tt is easily shown to be bijective. On the other hand, an element of Spl(k),
or, what is the same, an element of gt(k) of the form (1, ¥), determines a
I-parameter subgroup y: k* — GT(k). A priori, y is a formal mapping (i.e.,
(1) is expressed in terms of formal series in 1), but in fact y is regular and,
furthermore, extends to a regular (i.e., polynomial) mapping j: k* — GT(k).
This follows from the fact that p(1) = (4, f;), where

A%Jg(x, Y)= wfy(X, ¥)-InX - f (X, Y)", AlnY)- f, (X, ¥).

Put f = f,. Then (0, /) € GTy(k). Indeed, since (4, f;) € GT(k) and
(-1, 1) € GI(k), we have (-4, f}) = (=1,1)- (4, f;) € GI(k), and to
prove (5.23) it suffices to subtract from equality (4.4) for (4, f,) equality (4.4)
for (-4, f;), divide by 1 and let A approach 0. The composite mapping
Spl(k) — GTy(k) — M,(k) is inverse to the mapping M, (k) — Spl{k) in-
volved in Proposition 5.2.

3) In fact, GT,(k) = GT,(k). Indeed, choose ¢ € M,(k), and let g be

the result of acting by (0, f) € GTy(k) on ¢. Then g € M(k). Therefore
g € GRT (k) (see Proposition 5.9). If @ is the result of the right action of
g~' on g, then the result of the left action of (0, f) on @ is 1, ie., (0, f)
is the image of @ under the canonical mapping M (k) — GTB(k) .

4) Here is another proof of Theorem B. Take a fixed ¢ € M,(k), and let
(0, f) be the corresponding element in GTB(k). Let (4,A,e,D,R) bea
quasitriangular quasi-Hopf QUE-algebra over k[[/]]. Operating by the element
(0, ) € GTy(k) on (4, A, e, ®, R) (sce (4.12)), we obtain a triangular quasi-
Hopf QUE-algebra (A4, A, &, @, R) (triangularity is quasitriangularity plus the
equality R = ﬁ“l). By Propositions 3.6 and 3.7 of {1], a suitably chosen
twist makes R =1 and ® = 1, and then (4, A, &) is the universal envelope
of some deformation Lie algebra g over k[[#]]. In this situation we put f =
247" . InR and show that ¢ is a symmetric g-invariant element of g ® g,
while @ = go(htlz, ht23). Since R = 1, we have R¥ = R, ie, #l= .
From (1.5) we have that ¢ is g-invariant. Substituting X, = (A®id)(R*'R)™',
X, = (R @) ' R'RP0*R"?, and X, = & 'R¥R¥® into (5.23), and
using the fact that X ' R R commutes with X 1+ Xy, X3, we find that

W

(A®id)(In(R*' R)) =B . In(R”R?)- B
4 + (—RIZ)—](EZIS)—l -IH(RM_RH) '6213R12 ’
ie, (A®id)(t) = £3 p = Therefore, t € g®g. Finally, we have
o(x(A, b)Ax(d, B)™", B) - x(4, B) = 1, where x(4, B) = f(e", ") (see
the proof of Proposition 5.5). Putting 4 = A @0 and B = hi”, we
obtain g(h B 2@ ", k). B0 =1, ie, © =g, bP).
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§6. On the algebra grt, (k)

We recall that by fr, (4, B) is meant the set of Lie formal series y(4, B)
with coefficients in k, and by get,(k) the set of all € fr, (4, B) that satisfy
(5.17)—(5.20). By Proposition 5.7, equalities (5.17), (5.18), and (5.20) imply
(5.19). Furthermore, (5.17) and (5.19) imply (5.18): indeed, from (5.17) and
(5.19) one easily derives that the left-hand side of (5.18) commutes with A
and B. Now, grt,(k) is a Lie algebra with commutator (5.21). The set of
all v € fr.(4, B) that satisfy (5.17), (5.19), and therefore (5.18) also forms
a Lie algebra Wlth commutator (5.21). This algebra we name Ih(k) in honor

of Thara. Both algebras gt (k) and Ih(k) are graded: grt (k) EB,,Btt (k)

and Ih(k) = @, Ih"(k), where & means complete direct sum. Since Ih' (k)
is generated by the central element A — B, the study of Ih(k) reduces to the
study of the subalgebra Ih(k) = @, Ih"(k). We note that gt, (k) C Ih(k) (it
suffices to substitute X'2=4 and X7 =x"=x* =X =0 into (5.20)).

In [13] and [14], Thara uses the following realization of Ih(k). He calls a
continuous derivation 8: fr, (4, B) — fr, (4, B) special if 8(4) = [R, A],
8(B) = [R,, B], and 8(C) = [R,, C] for some R, R,, R, € fr, (4, B),
where C = —4—B . The special derivations form a Lie algebra S Derfr, (4, B).
Consider on frk(A B) the action of the group S, that permutes 4, B, C'. It
induces an action of S; on SDerfr (4, B) and on the set of inner denva-
tions Intfr, (4, B). It can be shown that the subalgebra of S;-invariants of the
algebra S Derfr, (4, B)/Intf, (4, B) is canonically 1somorph1c to Ih(k): an
element € Ih(k) corresponds to the class of the derivation 8,: fr,(4, B) —
fe (4, B) given by BW(A) =0 and g, (B) = [w, B]. Indeed, we can identify
SDerfr, (A, B)/Intfr, (4, B) with the algebra of derivations 9: fr,(4, B) —
fr (4, B) such that 8(4) = 0, 8(B) = [v, B], and 8(C) = [x, C] for
some ¥, x € fr, (4, B) and 6(B) = Omoddeg3. Such a & is determined
by specifying v, x € fr (4, B) such that [w(4, B), B]+[x(4,B),C]=0,
w = 0moddeg2, y = 0moddeg2. Invariance of & with respect to permuta-
tion of B and C means that (A4, B) = w(4, C). Invariance of 4 modulo
Intfr, (4, B) with respect to permutation of 4 and B means that y(5B, A)
—y(A, B). Finally, B(er%) [c’)‘1 8 1] indeed, in (5.21) D =ady -9,
and therefore (y,, ¥,) =8, (¥,) =9, (v,) —[¥,, ¥l

REMARK. If from the right action (4.13) of the group GT,(k) on the com-

plete free group with generators 012 and 0'22 we construct in the usual fashion a
left action, and then pass from groups to Lie algebras and from filtered algebras
to graded, we obtain the action of grt, (k) on fr (4, B) given by the formula
w—a,.

We gass now to a “hamiltonian” interpretation of Ih(k). For any Lie algebra
a we denote by % (a) the quotient of a ® a by the subspace generated by
elements of the form x®y—y®x and [x, y]j®z—x®[y, z], where x, ¥, z € a.
The image of x ® y in # (a) we denote by (x, y). The equalities (x, y) =
(v, x) and ([x, y], z) = (x, [y, z]) allow us to regard (x, y) as an invariant
scalar product with values in & (a) (any k-valued invariant scalar product in a
is obtained from this by composition with some linear functional % (a) — k).
If a is a free Lie algebra with generators Y, ..., Y, , then instead of & (o)
we shall write (Y|, ..., 7Y, ). Anelement f E .97 (A B) can be regarded as a

formula defining for EVery metrized Lie algebra g (i.e., finite-dimensional Lie
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algebra with a nondegenerate invariant scalar product) a function fu tgxg— k.
For example, f = ([4, B], [4, B]) € ¥ (4, B) defines the function f (x, y) =
([x, ¥1, [x, ¥1). Itis easily shown thatif f 7 0, then fB # 0 for some metrized
Lie algebra g (for g we can take gl(n), where n is sufficiently large). If g is
a metrized Lie algebra, then g® g identifies with g" x g, and consequently
the space of functions on g x g has a natural Poisson bracket (the “Kirillov
bracket”). If f, ¢ € F(4, B), then {f, ¢} = w, for some y € (4, B)
independent of g, which we denote by {f, ¢}. Thus, F(4, B) is a Lie
algebra with respect to this Poisson bracket. The action described above of 5,
on fr,(A, B) induces an action of 5; on F (4, B).

PROPOSITION 6.1. 1) The action of S; on 5 (A, B) preserves the Poisson
bracket.

2) The subalgebra of Sy-invariants of the algebra F (A, B) is isomorphic to
@D, Ih"(k), where @ is the algebraic direct sum.

Proor. 1) It suffices to show that for any Lie algebra g the action of S; on
the Poisson algebra of g-invariant functions on g* x g" obtained by identifying
g x g* with {(4,,4,,4;) € g" xg" x g'|4; + 4, + 43 = 0} via the projection
(A,, A5, 43) = (4,, 4,) preserves the Poisson bracket. This follows from the
fact that Poisson algebra in question can be represented as the quotient of the
Poisson algebra of g-invariant functions on g*xg*xg" by the ideal of functions
that equal 0 when 1, + A, + A, = O (that this ideal is Poisson is known from
hamiltonian reduction theory).

2)If feF(Y,...,Y,), we denote by 0f/8Y, the Lie polynomial in
Y,,..., Y, suchthatthepartof f(¥,..., Y, |, Y+Z,Y, ,,.--s Y,) linear
in Z isequal to (8f/8Y;, Z). From the g-invariance of fg for any metrized

Lie algebra g it follows that ) " ,[Y;, 8//8Y,]=0.

LemmA. If Y10 [Y,, Pl =0, where the P; are Lie polynomials in Y, , ...,
Y, . then there exists exactly one f e F (Y, ..., Y ) such that 3f/0Y; = P,
forall i.

Proor. The usual connection between polynomials and symmetric multilin-
ear functions allows us to restrict ourselves to the case that P, does not con-
tain Y|, while P,,..., P, and f arelinearin ¥,. In this case, if f exists,
then f = (¥, P). Conversely, if f = (¥, F), then af/0Y, = P; for all
i. Indeed, put Q;, = P,—8f/8Y;. Then Q, = 0 and >[Y;, 0] =0. For

i>1 write Q; inthe form R/(adY,, ..., adY, )Y, , where R, isan associative
po(l)ynomial. Then )::.12 R (1, ..., u,)=0, and therefore R, =+ =R,
=0. ®

Suppose ¥ € @, Ih" (k). It follows from the lemma that there exists a unique
f e (A4, B) suchthat 8f/84 = w(4, —A—B) and /08 = y(B, —A-B).
Clearly, f(B, A) = f(A, B)" Furthermore, f(d4, B) = f(-4— B, B) (both
sides of this equality have the same partial derivatives). This implies that f
is S;-invariant. Conversely, if f e (A4, B) is invariant with respect to §,,
then, defining w(4, B) from the relation w(4, —4 — B) = 8f/84, we find
that w € Th(k).

To prove that the Poisson bracket in & (4, B) corresponds to the commu-
tator in Ih(k), we use the imbedding Ih(k) — Derft, (4, B) taking ¢ into



858 V. G. DRINFEL'D

¢, =000, where §, € Derfr, (4, B) is as before and ¢ is the automorphism
of fr,(4, B) given by g(d) = -4 — B and o(B) = B. We have & (A)
[w(—4 - B, A), A] and & (B) = [w(—-4—-B,B),B]. If ¢ corresponds to
feF(4,B), then ¢ (A) [4,8f/04] and 6,(B) = [B, df/6B]. These
formulas can be regarded as the Hamilton equatwn corresponding to S . It re-
mains to use the connection between the Poissgn bracket of Hamiltonians and
the commutator of the corresponding vector fields. @

REMARKS. 1) The element f € & (4, B) that corresponds to ¥ € grt| (k) C
Ih(k) (see the proof of Proposmon 6.1) can be given the following interpreta-
tion. Suppose ¢ € M, (k), and @ is obtained from ¢ by the action of Exp(¥),
where Exp is the exponential mapping grt, (k) — GRT (k). If g is a metrized
Lie algebra over k,and fteg®g corresponds to the scalar product in g, then
D = qa(ht”, hrzs) and @ = ﬁ(htu, ht"‘3) are connected by the transforma-
tion (1.11) for some F € (Ug ® Ug)[[h]] (see Theorem A). It is easily shown
that F can be chosen so that 1) F = lmodh",2) h™"(F - 1)modh e L, ,
where L, is the set of elements of Ug® Ug that are polynomials of degree
no Ingher than n + 1 in elethents of g® 1 and 1 ®g, and 3) the image of

h™"(F-1)modh in L, /L, = Sym™ ! (g@®g) = Sym" ' (g* ® g”), regarded as
a function on g x g, is equal to — fB ;

2) Deligne has noted that, arguing as in the proof of Proposition 6.1, one can
obtain for any n an §,-equivariant 1somorphlsm between the quotient of the al-
gebra of special derwauons of fr,(4,, ..., 4,) by the ideal of inner derivations
and the quotient of & (4,, ..., An) by the subspace generated by the elements
(4,4}, 1 <i<n+1, where 4, , = -4, - —4,. Namely, the ele-
ment f € f (4,,..., 4,) corresponds to the derivation 4, — [4;, of104],
1<i<n.

PrROPOSITION 6.2 (Deligne-Thara [13]). dimIh"(k) =

o, = (3n)”" { S — a(d/3)u(d)2" — ¢ }

d|n

a, — B, where

B, = (6n) “{ S (1 +3a(d/2) +2a(d/3))u(D)2" + };
dln
U Is the Mébius function, a(x)=1 for x€Z, a(x)=0 for x ¢ Z, ¢, =—1
if n isof the form 3", e, =2 if n=2-3", and &, =0 otherwise.

Proor. Let V be a 2-dimensional vector space with basis 4, B. On V
there is an action of S,, permuting 4, B, and C = -4 - B. Let L, il
be the homogeneous component of degree n of the free Lie algebra generated
by V, ie, L (V) = frh(A B). The formula v — A®@ w(—4 - B, A) +
B® w(—A4 — B, B) defines an isomorphism Ih"(k) = (V' ® JLH(V))SJ NnKerf,
where [ is the commutator mapping ¥ ® L (V) — L, (V). Since f is
surjective, we have dimIh"(k) = dim(V ® L (V)™ — dim(L,, V)) . Now
use the formula for the character of the representation of GT(V) in Ln( V)
([16], Chapter II, §3, formula (16)). @

Here are the values of the numbers a, = dimIh"(k) for n < 13: a, =
=a,=a=10, a=a;,=4a;, =1, a7—aw—2 a =4, a, =9,
1h"(k) is formed by the elements of Ih(k)

a,

a,,=7, a;;=21. Abasisin
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A! = [Aj’ af/aA,]a

n ﬂn-}-l » where
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otherwise.
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-._4 —B. Let L (V)
Lie algebra generated
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f GT(V) in L (V)
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he elements of Ih(k)
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corresponding (see Proposition 6.1) to the elements f}, £, /3, Lie#F (4, B);
where

f]z([A:B]s[A!B])! (61)
fy=(x,x)+(x,y)+(y,y), wherex=[d,[4, B]],
y=I[B,[4, B]l, (6.2)
fH=1(z, 2}, where z = [4, [4, [4, B]]]+[4, [B, [4, Bll]
+[B, (8,4, B, (6.3)
JL:([[A,u],[B,u]],u), where u =[4, B]. (6.4)

In the process of proving Proposition 1 of [14], Thara obtained the following
result.

PROPOSITION 6.3. For any odd n > 3 there exists a v € git| (k) such that

n—1
w(d,B)=) (;‘1) (ad A)" ' (ad B)" " '[4, B] modl[p,, bl

m=1
where p, is the commutant of fr, (4, B).

Thara’s proof uses Gal(Q/Q). Here is another proof. We can assume that
k=C. Put Pyg,(4, B) = gg,(—4, —B). By Proposition 5.5, Py, is obtained
from ¢y, by the action of some g € GRT,(C). Let ¥ be the homogeneous
component of degree n of the image of g under the logarithmic mapping
GRT,(C) — prt,(C) . From (2.15) it is easily found that (n(2mi)"/2((n))- ¥ is
the element desired. ©

It is not hard to show that if v, ¥, € p; , then the right-hand side of (5.21)
belongs to [p,, p,]. It follows therefore from Proposition 6.3 that grt, (k) has
at least one generator of degree n for every odd n > 3.

QuesTions. Is it true that gt (k) has exactly one generator of degree n for
every odd n > 3 and no generators of other degrees? Is the algebra &, grt';(k)

free?
REMARKS. 1) An affirmative answer to the first question is equivalent to the

conjunction of Deligne’s conjecture in the Introduction of [14] and the density
conjecture for the Zariski image of Gal(Q/Q) in GT(Q)).

2) For n =1,2,4,6 we have get] (k) = In(k) = 0. Since dimIh*(k) =
dim Ihs(k) = 1, it follows from Proposition 6.3 that gtt'l'(k) = Ih"(k) for
n=3,5. Since dimIh®(k) =1, and [Ih’(k), In’(K)] # 0 (see [14]), we have
get’ (k) = Th®(k) = [get}(k), get} (k)]. Tt can be shown that dim geti (k) = 1<
dim Ih7(k) and gtt;"(k) is generated by the element corresponding to 8, — 1€
(4, B), where f; and j;g.are determined by formulas (6.3) and (6.4).
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