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0. Introduction

1. Warm-up: sheaves on character varieties and skein categories

1.1. Recollection on reductive groups and quotients. We will always work over
C. Let O be a finitely generated commutative algebra and R an arbitrary com-
mutative algebra. Any choice of a finite presentation

O ≃ C[x1, . . . , xn]/I

induces a bijection between the set

Z(R) := Homalg(O, R)

and the set of common zeros in Rn for elements of I

{z ∈ Rn | ∀ f ∈ I, f (z) = 0}.

This is clearly functorial in R, and by Yoneda Lemma the functor Z(−) deter-
mines O up to canonical isomorphism. In particular, such a presentation iden-
tifies Z(C) with a set of zeroes of polynomials in Cn. We call Z the variety
associated with O, and O the algebra of function on Z. In other words, for the
purpose of these notes, “variety” means “affine scheme of finite type over C”.
Likewise a morphism of variety is just a morphism (in the opposite direction)
between their respective associated algebras.

An affine algebraic group is a variety, G equipped with a multiplication given
by a map

∆ : O(G) −→ O(G)⊗2

and an inverse given by a map

S : O(G) → O(G)

inducing on O(G) the structure of an Hopf algebra.

Definition 1.1. An algebraic representation of G is a right O(G)-comodule. We denote
by Rep G the category of algebraic representations of G.

Let us emphasize that we do not impose any finite dimensionality condition
so this is a “large” category: the collection of isomorphism classes of objects is
not a set. If V ∈ Rep G then V carries a linear action of G1 in the usual sense: for
v ∈ V and letting

∆(v) = ∑
i

fi ⊗ vi

be the coaction on v, the action is given by

g · v = ∑
i

fi(g)vi.

The converse is not true in general (not all representations of G are algebraic),
but this is clearly true for finite-dimensional representations. Their role is em-
phasized by the following striking property of categories of comodules:

Theorem 1.2 (Fundamental theorem of comodules). Let C be a coalgebra over a field.
Then every C-comodule is the union of its finite-dimensional sub-comodules.

Corollary 1.3. Let V be a linear representation of G. Then V is algebraic iff it is lo-
cally finite dimensional, i.e. if for every v ∈ V, there exists a finite dimensional sub-
representation of V that contains v.

Definition 1.4. An affine algebraic group is called reductive if the category Rep G is
semisimple.

1really a linear action of G(C) but we won’t make that distinction
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Example 1.5. Let xij, 1 ≤ i, j ≤ n be indeterminates which we’ll often conveniently
think of as coefficients of a matrix

X = (xij).

We set
O(GLn) := C[X, det(X)−1].

It’s easily seen that there is a natural bijection for any commutative algebra R

GLN(R) ≃ Homalg(O(GLn), R)

showing that, although we picked a particular presentation for that algebra, the
underlying variety structure on GLN is canonical. Likewise, that the multiplica-
tion of GLN is a morphism of variety follows either from the fact that the mul-
tiplication of GLN(R) is natural in R, or by observing that it is induced by the
coproduct on O(GLN) given by

∆(xij) = ∑
k

xik ⊗ xki.

It’s well-known that Rep GLN is semi-simple, i.e. that GLN is reductive.

From now on we assume that G is reductive. An algebraic action of G on a
variety Z is by definition an action of G on the set Z such that the action map

Z × G −→ Z

is a morphism of variety, i.e. is induced by an algebra map

O(G) −→ O(G)⊗O(Z).

Hence the data of an action of G on Z is the same as the data of a G-representation
on O(Z), making it an object in Rep G, such that the multiplication

O(Z)⊗2 −→ O(Z)

and the unit
C −→ O(Z)

are morphisms of G-representations. A fancier way to state this, which will be
important for us later, is that O(Z) is an algebra object (we’ll just say “algebra”)
in the monoidal category Rep G.

Definition 1.6. Let Z be a variety with an algebraic action of G. The categorical quotient
Z//G is the variety associated with the algebra O(Z)G.

A classical result of Hilbert and Nagata states this algebra is finitely generated
provided G is reductive, hence this is well-defined.

Observe that the action of G on itself by conjugation is algebraic, making O(G)
an object in Rep G. Let V be a finite-dimensional representation of G and let
v ∈ V, µ ∈ V∗. To this data we attach a function fv,µ on G given by

g 7−→ µ(g · v).

More invariantly, this maps is nothing but the image of the coaction on V via the
canonical isomorphism

HomG(V,O(G)⊗ V) ∼= HomG(V ⊗ V∗,O(G)).

This induces a map of G-representation

iv : V ⊗ V∗ −→ O(G).

Multiplication of those functions is given by the tensor product of representations
in the following sense:

fv,µ fw,ν = fv⊗w,µ⊗ν.
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Moreover, if ϕ : V −→ W is a morphism of G-representations, then if µ ∈ W∗

then
fϕ(v),µ = fv,ϕ∗(µ)

where ϕ∗ is the transposed map. In particular, this construction “distributes over
direct sums”, and we get:

Theorem 1.7 (Peter-Weyl decomposition). For G reductive, the collection of maps
(v, µ) 7→ fv,µ factors through an isomorphism in Rep G⊕

i∈I
Vi ⊗ V∗

i ≃ O(G)

where I is a choice of a set of isomorphism classes of irreducible finite dimensional G-
representations. Under this identification, the multiplication on O(G) is given by the
canonical map

O(G)⊗2 ⊃ (V ⊗ V∗)⊗ (W ⊗ W∗) ≃ (V ⊗ W)⊗ (V ⊗ W)∗ −→ O(G).

A convenient way to describe this multiplication is as follows: the G-equivariant
map iV can be dualized to get an operator

LV ∈ HomG(C,O(G)⊗ V ⊗ V∗) ∼= (O(G)⊗ End(V))G

representing the coaction of O(G) on V. Explicitly, again for G = GLN and
V = CN ,

LV = ∑
i,j

xij ⊗ Eij

where Eij is the elementary matrix. Observe that (O(G) ⊗ End(V))G is an al-
gebra, and the Peter–Weyl description of the multiplication of O(G) implies the
following relation:

LV⊗W = L(1)
V L(2)

W = L(2)
W L(1)

V (1.1)

in (O(G)⊗ End(V ⊗W))G, where V, W are arbitrary finite-dimensional modules
and where

L(1)
V = LV ⊗ idW L(2)

W = σW,V(LW ⊗ idV)σV,W

and σ is the symmetry of Rep G, i.e. the flip of 2-tensors. In that case this really is
a complicated way to say that the xij’s commute, but we’ll use a similar equation
as a definition for a quantum version of O(G) in Section 2.4.

1.2. Character varieties of surfaces. Let Γ be a finitely generated (discrete) group.

Proposition 1.8. To Γ is canonically associated a variety RΓ whose R-points are

RΓ(R) = {ρ : Γ −→ G(R)}
the set of representations of Γ into G(R).

Proof. Fix a presentation
Γ = ⟨g1, . . . , gn|wi⟩

where the wi are words in the gi’s and their inverses. Let

Xk = (x(k)ij ), k = 1 . . . n

be matrices of variables and set

O(RΓ) = C[Xk, det(Xk)
−1]/I

where I is the ideal generated by the coefficients of the matrices

wi(X1, . . . , Xn)− id
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where the notation means we substitute g±1
k 7→ X±1

k (note that X−1
k is a well-

defined matrix whose coefficients are polynomials in x(k)ij and det(Xk)
−1). For

any commutative algebra R there is a natural bijection

RΓ(R) ≃ Homalg(O(RΓ), G(R))

as required. Along the way, this shows O(RΓ) is canonically independent of the
chosen presentation of Γ. □

We call RΓ the (G-)representation variety of Γ.

Definition 1.9. The (G-)character variety of Γ is the categorical quotient

ChΓ := RΓ//G.

The name “character variety” is justified by the following:

Theorem 1.10 (Artin-Voigt). Let G = GLN . There are canonical bijections between the
following sets:

(a) the C-points of the character variety ChΓ
(b) the set of equivalence classes of semisimple N-dimensional representations of Γ.
(c) the set of characters of N-dimensional representations of Γ

Let S be a compact, connected, oriented surface.

Definition 1.11. The representation variety of S w.r.t to a basepoint x is

RS,x := Rπ1(S,x)

and the character variety of S is

ChS := Chπ1(S,x) .

Remark 1.12. Since we modded out by the action of G by conjugation, ChS is
canonically independent of the choice of a basepoint, hence this is well-defined.

Let S = Sg,n be a surface of genus g with n boundary components. If n ≥ 1 then
π1(S) is free and a choice of free generators gives an isomorphism of varieties

ChS ≃ G2g+n−1//G

where G acts by simultaneous conjugation. If S = Sg is closed, let S◦ be S with a
disc removed. The choice of a basepoint x on ∂S◦determines a map

µ : RS◦ ,x −→ RS1,x

which, after choosing free generators for π1(S◦, x), is given explicitly by

(A1, . . . , Ag, B1, . . . , Bg) 7−→
g

∏
i=1

AiBi A−1
i B−1

i

(the monodromy around the removed disc) so that

ChS = µ−1({1})//G.

Remark 1.13. The affine scheme Ch(S) is reduced, i.e. the algebra O(Ch(S)) does
not contain any nilpotent element. If n ≥ 1 this follows from the classical fact
that G is. For n = 0 this is much harder: for g > 1 this is due to Simpson [Sim94,

Thm 11.1], and for g = 1 this follows from [GG06, Thm 1.2.1].

The following fundamental structure on character varieties of surfaces has been
discovered by Atiyah–Bott in the framework of 2d Yang–Mills theory [AB83].
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Theorem 1.14. Let g be the Lie algebra of G and b a non-degenerate, symmetric, ad-
invariant bilinear form on g. To this data is canonically attached a Poisson structure on
ChS.

Remark 1.15. Such a pairing always exists for a reductive G. For G = GLN a
standard choice is the pairing

(A, B) 7−→ Tr(AB).

Remark 1.16. There are two well-known, equivalent combinatorial models for this
Poisson structure due to Fock–Rosly [FR99] and Alekseev–Kosmann-Schwarzbach–
Malkin–Meinrenken [AKSM02, AMM98].

1.3. GLN-character varieties and skein theory. In this section we show that func-
tions on the character variety for GLN , the algebra of observables of our theory,
are given by “Wilson loops”. Let

L(S) = H1(LS, C)

where LS is the free loop space of S. In other words, L(S) is the vector space
with a basis given by homotopy classes of free loops on S.

Definition 1.17. The Goldman algebra is

G(S) = S(L(S)).

It can be thought of as the vector space with a basis given by multi-loops, i.e. (possibly
empty) unions of free loops on S. Multiplication is given by union, and the unit is the
empty loop.

Proposition 1.18. There is an evaluation morphism

ev : L(S) −→ O(ChS)

which maps a free loop γ to the function fγ constructed as follows: let x be an arbitrary
point on γ, and let γ̃ be the corresponding loop based at x. Let [ρ] ∈ ChS and choose a
lift ρ ∈ Rπ1(S,x). Then we set

fγ([ρ]) = Tr(ρ(γ)).

One easily see that this is well-defined (i.e. it does not depend on the choices
we made), and it extends to an algebra map

ev : G(S) −→ O(ChS).

Theorem 1.19 (Procesi [Pro76], Sikora [Sik01]). The map ev is surjective and its kernel is
generated by the following skein relations:

= N ·

and

∑
σ∈SN+1

ϵ(σ) σ = 0
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Here, the rectangle labelled by σ means one replaces that rectangle by the
obvious picture representing σ, e.g.

(1, 2, 3) =

The meaning of these relations is that we assume that we have linear com-
binations of multi-loops on both side, which are all identical (up to homotopy)
outside the dotted square. Informally, those relations should be thought of as
some sort of abstract characterization of the vector space V of dimension N. The
first relation, indeed, literally says that: by definition, a contractible loop on S
represents the function

ρ 7→ Tr(ρ(1)) = Tr(idV) = dim(V) = N.

The second relation is a diagrammatic representation of the fact that

N+1∧
V ∼= (0).

Remark 1.20. There are similar descriptions of functions on the character variety
for other groups. You might be familiar with its version for SL2 which is related to
the so-called Kauffman bracket in knot theory. Indeed, if A ∈ SL2 then Tr(A) =
Tr(A−1) which translates into the fact that we can represent functions on the
character varieties using unoriented loops on S. It turns out that the skein relations
in that case are nicer if one associates to a loop γ the function

ρ 7−→ −Tr(ρ(γ))

(note the minus sign). The kernel of the evaluation map in that situation is gen-
erated by

= −2 ·

and

− = + .

Note that this second relation would not make sense for oriented loops ! See the
marvelous paper [Tin15] for an explanation of the sign issue.

1.4. The Goldman Poisson bracket. Let α, β be two free loops on S in generic
position, which in particular means α and β have only finitely many intersection
points which are all transverse. Let p ∈ α ∩ β and define ϵ(α, β, p) to be +1 if
the vectors tangent at p to α, β are positively oriented, and −1 otherwise. I.e.
assuming the plane is oriented counter-clockwise then

α β

7→ +1

β α

7→ −1.
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Definition 1.21. The Goldman bracket of α and β is defined by

∑
p∈α∩β

ϵ(α, β, p)αpβp.

where αp, βp are the loops based at p obtained from α, β respectively.

Theorem 1.22 (Goldman [Gol86]). The bracket is well-defined and induces on L(S) the
structure of a Lie algebra, which uniquely extends to a Poisson structure on G(S). The
skein relations are compatible with the bracket, hence this descends to a Poisson structure
on O(ChS) which coincides with the one originally defined by Atiyah–Bott.

Example 1.23. In general, a pair of pants and a punctured torus have the same
fundamental group, hence the same character variety. However, for GL1 = C×

the Goldman bracket for the pair of pants is zero, while for a punctured torus
this is the unique bracket on

O(Ch(T2\D2)) ∼= C[x±1, y±1]

such that
{x, y} = xy.

1.5. Character stacks and skein categories. It’s clear from the definition that the
function associated with a loop can be broken down as a composition of maps as-
sociated with pieces of that loop, i.e. we want to extend our picture to encompass
paths on S and not just loops. Also, the construction of O(ChS) is not compatible
with the gluing of surfaces. Indeed, if S is obtained by gluing two surfaces S′, S′′

along some part of their boundaries, then there is a map

O(ChS′)⊗O(ChS′′) −→ O(ChS),

which is however not surjective in general.
A fundamental observation [BZFN10] is that one should instead work with the

category of quasi-coherent sheaves on the character variety or, more accurately,
on the character stack Ch(S). We won’t need a formal definition of what a stack
is, but roughly speaking we have a categorified version of the characterization
of the algebra of functions over an affine scheme: QCoh(Ch(S)) is a symmetric
monoidal category, such that there are natural equivalences for any commutative
algebra R

Hom⊗(R -mod, QCoh(Ch(S)))× ≃ HomGpd(Π1(S), G(R))

where the left hand side is the groupoid of colimit preserving symmetric monoidal
functor and symmetric monoidal natural isomorphism, and on the right hand
side G(R) is seen as a groupoid with one object. For our purpose however, the
following working definition will be sufficient:

Definition-Proposition 1.24. Let X be an affine algebraic variety with algebra of func-
tions O(X). The category of quasi-coherent sheaves on X is

QCoh(X) := O(X) -mod .

If G acts on X algebraically, then the category of quasi-coherent sheaves on the so-called
quotient stack X/G is the category

QCoh(X/G) := O(X) -modG

of G-equivariant O(X)-modules. In particular, any choice of a basepoint x on a connected
surfaces S induces an equivalence

QCoh(Ch(S)) ≃ O(RS,x) -modG .
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A crucial observation is that the character stack of a disc is the quotient of a
point by G: we call this the classifying stack BG = pt/G of G. Then the definition
above implies that

QCoh(BG) = C -modG = Rep G.

In other words, although the character variety of a disc is trivial, and in particular
doesn’t know anything about G, the character stack of the disc is interesting and
one of the main objectives of these notes is to explain and generalize a precise
sens in which the character stack of an arbitrary surface is obtained by gluing
together copies of BG.

We also note that, in general, O(X) is a G-equivariant module over itself the
obvious way. This is the structure sheaf of the quotient stack X/G and we have,
as algebras,

EndQCoh(X/G)(O(X)) = O(X)G = O(X//G).

More generally, for any V ∈ Rep G one can consider the free equivariant mod-
ule O(X)⊗ V. We have a G-equivariant version of the free/forget adjunction

EndQCoh(X/G)(O(X)⊗ V) ∼= HomG(V,O(X)⊗ V)

and of the tensor/hom adjunction

HomG(V,O(X)⊗ V) ∼= HomG(C,O(X)⊗ End(V)) ∼= (O(X)⊗ End(V))G

where End(V) is seen as a G-module by conjugation.
In this section, we’ll use this observation in order to show that QCoh(Ch(S))

has a skein theoretic description as well.

Definition 1.25. The skein category SkN(S) of S has:

• objects finite configurations of distinct points on S, labelled by {+,−}
• morphisms formal linear combinations of homotopy classes of multi-paths, such

that the start (resp. the end) of each path is labelled by + if the corresponding
point belong to the source of the morphism and by − otherwise (resp. vice versa),
modulo the skein relations of Theorem 1.19.

This is well-defined precisely because the skein relations are local: they do not
involve the global topology of the surface but only happen inside an embedded
disc.

Note that a single path on S can be interpreted as a morphism in SkN(S) in
different ways, since each of its endpoints can be chosen to be either in the source
or in the target of the corresponding morphism. This is exactly why we need this
extra labelling by {+,−}. To remove this ambiguity, and in anticipation of when
we’ll replace paths on S by tangles we represent those as being embedded in the
cylinder S × I, a morphism from the object at the top to the object at the bottom.
E.g.
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++
−→

+

+

while

+-
−→

+-

In particular, hom spaces in this category are in fact determined by those be-
tween objects only labelled by +, and since a path has exactly two endpoints
those are 0 unless the number of points at the top and the bottom is the same. In
other words, it is enough to understand EndSkN(S)(++ · · ·+) where ++ · · ·+ is
some fixed choice of a configuration of n points all labelled by +.

Hence, let D2 be the standard unit disc and choose once and for all for each
n ≥ 0 a configuration of points on the x axis inside D2. Let S̃kN(D2) be the
full subcategory of SkN(D2) which has these configurations, with all possible
labellings, as objects. Clearly the inclusion S̃kN(D2) ⊂ SkN(D2) is an equivalence
of categories.

Proposition 1.26. There is a fully faithful functor

S̃kN(D2) −→ Rep GLN

which maps a labelling of the chosen configuration of n points to
⊗n

i=1 Vϵi where V = CN

is the defining representation, ϵi is the labelling of the ith point and

V+ := V V− := V∗.
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It is defined on elementary morphisms in the following way

+ +

+ +

7→ σ : V ⊗ V 7→ V ⊗ V
u ⊗ v 7→ v ⊗ u

− +
7→ coev : C −→ V∗ ⊗ V

+ − 7→ ev : V ⊗ V∗ −→ C.

Proof. This proposition is basically a reformulation of Schur–Weyl duality: the
natural algebra map

C[Sn] −→ EndGLN (V
⊗n)

is surjective, its kernel is empty if n ≤ N and is generated as an ideal by
∑σ∈SN+1

ϵ(σ)σ otherwise, where SN+1 acts on, say, the first N + 1 factors. □

It is well-known that every finite-dimensional GLN-module can be realized
a sub-module (equivalently a quotient) of V⊗k ⊗ (V∗)⊗l for some integers k, l.
Putting this together, one gets

Proposition 1.27. The category Rep GLN , aka QCoh(Ch(D2)), is equivalent to the
category obtained from SkN(D2) by formally adding kernels of idempotent and (possibly
infinite) direct sums.

Now let S be an arbitrary (connected) surface. Choose an embedding of the
disc i : D2 ↪→ S and let SkN(S, i) the full subcategory of SkN(S) whose objects are
the configurations of points inside the image of D2 that we fixed earlier. Again
the inclusion SkN(S, i) ⊂ SkN(S) is an equivalence. Also, the construction of the
skein category is clearly functorial with respect to smooth embeddings, so we get
a functor

S̃kN(D2) −→ SkN(S, i).
Clearly, morphisms in SkN(S, i) can be written as (linear combinations of) com-

positions of morphisms happening inside the disc, i.e. images of morphisms in
S̃kN(D2), and loops on S which are either free of based at one of the chosen
points inside of D2.

Consider the case of a configuration made of a single point x labelled by +.
We’ve seen that free loops on S represents functions on the character variety, so
what about based loop ? Well, to γ ∈ π1(S, x) we attach the function that takes a
genuine representation ρ ∈ RS,x (as opposed to an equivalence class) and return
ρ(γ) acting on V = CN . This map ρ 7→ ρ(γ)|V is polynomial and G-equivariant.
In other words, we get an algebra map

C[π1(S, x)] −→ (O(R(S,x))⊗ End(V))GLN .

More generally, endomorphisms of (x,+) in the skein category can also have
free loops components. Indeed, by definition these endomorphisms are repre-
sented by linear combination of multi-loops having exactly one component that
is based at x and all others being free. We get this way a based version of the
Goldman algebra

G(S, x) := G(S)⊗ C[π1(S, x)].
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All in all we again get an evaluation map

G(S, x) −→ (O(RS,x)⊗ End(V))GLN

which can be shown again to be surjective and with kernel given by the skein
relations.

Hence, we have sketched the proof of the following:

Proposition 1.28. Any choice of a basepoint x on S gives an equivalence between the
skein category SkN(S) and the full sub-category of

QCoh(Ch(S)) ≃ O(RS,x) -modGLN

of free equivariant modules of the form O(RS,x)⊗
⊗n

i=1 Vϵi .

Note that, by definition, endomorphisms of the empty configuration on S in
the skein category are linear combination of free multiloops on S modulo the
skein relation. The functor above maps this to O(RS,x) as a G-equivariant module
over itself, and since this functor is fully faithful we get an algebra isomorphism

End(∅) ∼= O(RS,x)
G,

recovering Theorem 1.19 as a particular case.
Let us look more closely at the case where S = S1 × [0, 1] is an annulus. Evalu-

ation on the generator of π1(S, x) = Z gives an isomorphism of algebraic variety

RS,x ∼= GLN

so that the corresponding function GLN → End(V) is nothing but the action of
GLN on the module V. In other words, the image of that generator in the skein
category is the element in

EndO(GLN) -modG
(O(GLN)⊗ V) ∼= (O(GLN)⊗ End(V))G

representing the coaction of O(G) on V, that is the operator LV . The topological
meaning of relation 1.1 is then the following:

=

where the thick gray strand represents the “inner tube” of the solid cylinder.

2. Categorified linear algebra

2.1. Locally finitely presentable categories. In this section we setup the categor-
ical machinery to define and compute factorization homology with coefficient
in a braided tensor category. The very first thing we need to do is to choose a
target, formally a symmetric monoidal (2,1)-category of linear categories. There
a many possible choices here, but the previous section showed that we need to
consider large categories like Rep G, the category of all O(G)-comodules, basi-
cally because we went O(G) itself to be an object in there. A very convenient
framework to talk about categories of modules, comodules and more generally
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of categories of quasi-coherent sheaves, is that of locally finitely presentable cat-
egory. This requires some formal definitions. For a complete reference on that
topic, see [AR94].

Let C be a C-linear category.

Definition 2.1. An object x ∈ C is called compact (or sometimes finitely presentable)
if the functor

Hom(x,−) : C −→ VectC

commutes with filtered colimits. It is called tiny, or compact-projective if Hom(x,−)
commutes with all small colimits.

Remark 2.2. In the linear case, an object is tiny if and only if it is simultaneously
compact and projective, hence the name.

Let Cc be the full sub-category of compact objects.

Definition 2.3. The category C is called locally finitely presentable if it is cocomplete,
i.e. it has all small colimits, and if there is an essentially small collection of compact
objects S ⊂ Cc which is a strong generator, meaning that every object in C can be written
as a colimit of objects in S. It is called locally tiny if there exists such a S made of tiny
objects.

Remark 2.4. Another characterization of S being a strong generator is that the
collection of functors {Hom(c,−)}c∈S is jointly conservative, i.e. a morphism
f : x → y is an isomorphism if and only if all of the induced maps

Hom(c, x) −→ Hom(c, y)

are.

Remark 2.5. It’s easily seen that a finite colimit of compact objects is compact ([AR94,

Prop. 1.3]) and, in fact, if C is LFP then Cc is the closure of S under finite colimits in
C, and in particular is essentially small, so that Cc is also a strong generator. It
also means that one can always find a possibly larger set S ⊂ S̄ ⊂ Cc such that
every object is a filtered colimit of objects in S̄ (e.g. one can take S̄ = Cc, but often
there are smaller choices)2. In case S = Cc every object x is in fact canonically a
filtered colimit of objects in Cc [AR94, Thm 1.1, Prop 1.22], the colimit over the forgetful
functor

Dx : Cc ↓ x −→ C
where the slice category Cc ↓ x has objects maps c → x, c ∈ Cc and morphisms
commutative diagrams. Likewise, in a locally tiny category, every object is canon-
ically a colimit, however not necessarily filtered in that case, of tiny objects.

Example 2.6. The typical examples of locally finitely presentable categories to have
in mind are:

• The category A -mod for an algebra A: compact objects are finitely pre-
sentable A-modules, hence the name. This category is in fact locally tiny,
in which case two examples of generators are given by the collection of
finitely generated projective (resp. free) modules.

• The category C -comod for a coalgebra C: compact objects are finite-dimensional
C-comodules. In that case, that this category is locally finitely presentable
is basically a reformulation of the fundamental theorem of comodules
(Thm 1.2). This category is not always locally tiny: categories of comod-
ules may fail to have enough projective objects.

2Here were are using that a category closed under finite colimits is automatically a filtered category
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Those categories are naturally the objects of a 2-category, but we’ll actually
need something a little bit simpler:

Definition 2.7. A (2, 1)-category is a 2-category in which every 2-morphism is invert-
ible. In particular, a strict (2,1)-category is the same as a category enriched in groupoids.

Remark 2.8. Typical examples of (strict) (2,1)-categories arise as follows: let C be
a category enriched in topological spaces, i.e. hom spaces are topological spaces
and compositions maps are continuous. Then we can define a (2,1)-category h2C
with the same objects as C, and morphisms

Homh2C(X, Y) := Π1(HomC(X, Y))

where Π1 is the fundamental groupoid.

Definition 2.9. We denote by LFP the (2, 1)-category whose objects are locally finitely
presentable categories, morphisms are linear functors which are cocontinuous, i.e. which
commute with small colimits, and 2-morphisms are natural isomorphisms. We denote by
LFPc the (2, 1)-category in which we additionally require functors to preserve compact
objects.

One should think of LFP categories as some kind of categorified vector spaces,
and of a choice of a generator as some kind of basis. The following Proposition
thus says that “a linear map is determined by what it does to a basis”, i.e. that C
is in fact freely generated under filtered colimits by Cc.

Proposition 2.10. Let C, D be in LFP, then restriction along Cc induces an equivalence
between Hom(C,D) and the category of right exact3 linear functors Cc → D.

Crucial for us is the so-called special adjoint functor theorem (SAFT):

Proposition 2.11. Let F : C −→ D be a functor in LFP. Then F has a right adjoint.
Moreover, F preserves compact objects if and only if its right adjoint preserves filtered
colimits. If C is locally tiny, then F preserves tiny objects if and only if its right adjoint is
cocontinuous.

Remark 2.12. Prop. 2.10 implies that LFPc is in fact equivalent to the perhaps
more familiar (2,1)-category REX of essentially small categories which are closed
under finite colimits, and right exact functors. However, although Prop. 2.11 says
that under reasonable assumptions those functors will have right adjoints in LFP,
those will rarely be themselves compact preserving, which is the main reason to
work with LFP.

2.2. The Deligne–Kelly tensor product. Accordingly, we can define a tensor
product on LFP by mimicking the vector space definition:

Definition 2.13. Let C,D ∈ LFP. A Deligne–Kelly tensor product of C and D is a pair
of an LFP-category C ⊠D and a bifunctor

C ×D −→ C ⊠D
which is linear and cocontinuous in each variable, and which is universal for this property.

Theorem 2.14 (Kelly, see also [Fra13]). The Deligne-Kelly tensor product exists and turn
LFP into a symmetric monoidal (2,1)-category, where the symmetry is induced by the
obvious flip, and the unit is VectC. In fact, LFP is even closed, i.e. Hom(C,D) ∈ LFP
and there are natural equivalences

Hom(C ⊠D, E) ≃ Hom(C, Hom(D, E)).
3We call a functor right exact if it commutes with finite colimits. If the categories at hand are abelian
this coincides with the usual definition as a functor which preserves right exact sequences, but this is
more general.
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Remark 2.15. For an excellent discussion of symmetric monoidal structures on
2-categories, see [SP09, Chap. 2].

Remark 2.16. We denote by x ⊠ y the image of the pair (x, y) in Cc ⊠Dc and we
call those the pure tensors. We have

HomC⊠D(x ⊠ y, x′ ⊠ y′) ≃ HomC(x, x′)⊗C HomD(y, y′)

hence in particular x ⊠ y is again compact. Those generates C ⊠D under filtered
colimits, and compact objects in C ⊠ D are finite colimits of pure tensors. To-
gether with Proposition 2.10 this implies that a functor out of C ⊠D is uniquely
characterized by what it does to pure tensors, a trick we will use often.

Remark 2.17. The Deligne–Kelly tensor product generalizes the tensor product of
algebras in the sense that

a -mod⊠b -mod ≃ (a ⊗ b) -mod .

2.3. Monoidal, braided and ribbon categories. In this section we adapt the usual
definition of a monoidal category to our setting.

Definition 2.18. A (strict) monoidal category is an algebra object in LFPc, i.e. a category
A ∈ LFP equipped with a tensor product

⊗ : A⊠A −→ A
and a unit

1A ∈ A
such that 1A is compact, and ⊗ is unital and associative and preserves compact objects.

A braiding on A is a linear natural isomorphism

β : x ⊗ y ≃ y ⊗ x

satisfying the usual hexagon axioms.
A balancing on the braided monoidal A is a natural automorphism θ of the identity

which satisfies
θx⊗y = βy,xβx,yθxθy.

Remark 2.19. The technical condition that the tensor product preserves compact
objects will be crucial in the proofs, which is why we choose to make it part of
the definition.

A fundamental property that monoidal categories can have and which shows
up often in representation theory and quantum topology is rigidity. Usually one
requires all objects x to have a, right say, dual in A, i.e. another object x∗ and
maps

ev : x ⊗ x∗ −→ 1A
and

coev : 1A −→ x∗ ⊗ x
satisfying the usual zig-zag identities. This doesn’t quite make sense for our large
categories, e.g. VectC, the category of all vector spaces, is clearly not rigid in that
sense. The natural thing to ask in our setting is instead the following:

Definition 2.20. A monoidal category is rigid if all compact objects have a left and right
dual. If A is braided and balanced, we say that A is ribbon if it is rigid and if θx∗ = θ∗x .

Example 2.21. Let H be an Hopf algebra. Then the monoidal category H -comod
is rigid in that sense, but crucially the monoidal category H -mod is not.

Rigidity is a strong property which has some interesting consequences, e.g.:
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• The condition that we impose that the tensor product of A should preserve
compact objects is in fact automatic if A is rigid, and this is usually how
we verify this condition in practice: if x, y are compact, then

Hom(x ⊗ y,−) ∼= Hom(y, x∗ ⊗−)

and since by assumption y is compact, and ⊗ preserves colimits in each
variable, x ⊗ y is compact as well. If y was in fact tiny, then this show
x ⊗ y is as well: in other words the sub-category of tiny objects is a “tensor
ideal” in that case.

• If A is rigid and if the unit 1A is tiny (i.e. if it’s projective, since it’s
already compact by assumption), then somewhat surprisingly A is in fact
automatically semisimple. Indeed for any compact x,

Hom(x,−) ∼= Hom(1A, x∗ ⊗−).

But the functor on the right hand side commutes with all colimits by
assumption, hence x is also projective.

It’s well-known that (ordinary) ribbon categories yield links and tangles in-
variant. We record the following version of the statement:

Definition 2.22. Let A be a ribbon category (as defined above) and let TA be the category
whose:

• objects are finite sequences of pairs (x, ϵ) where x is a compact (hence dualizable)
object in A which we think of as sitting on the horizontal axis on the standard
disc D2

• morphisms are linear combinations of isotopy classes of decorated ribbon graphs,
i.e. framed, oriented graphs embedded in D2 × I, with edges labelled by compact
objects in A and vertices are labelled by morphisms in A in a compatible way.

Here is a typical example of a ribbon graph:

f

(x,+)

(y,+) (z,−)

where f is a morphism x ⊗ y∗ → z∗.

Theorem 2.23 ([RT90, Tur10, Tur90]). There is a unique linear functor (the Reshetikhin–
Turaev functor)

RTA : TA −→ A
which maps the sequence (x1, ϵ1) . . . (xk, ϵk) to the tensor product xϵ1

1 ⊗ . . . ⊗ xϵk
k , where

x+ = x and x− = x∗, the elementary crossing, the cup and the cap to the braiding,
evaluation and coevaluation in A respectively, and a labelled vertex to the corresponding
morphism.



FACTORIZATION HOMOLOGY OF BRAIDED TENSOR CATEGORIES (THIS VERSION: July 5, 2023) 17

2.4. The main example: quantum groups. A good reference for this section
is [KS97]. Let q be a generic complex number (in this case this means q is neither
0 nor a non-trivial root of unity). We also fix a dth root q1/d root of q for some
integer d depending on G and some normalization choices. The corresponding
quantum group is a certain Hopf algebra Funq(G) which is a q-deformation of
O(G) in the sense that Fun1(G) = O(G). For G = GLN it can be described as
follows:

Let

R = q1/N

(
∑
i ̸=j

Eii ⊗ Ejj + q ∑ Eii + (q − q−1)∑
i<j

Eij ⊗ Eji

)
∈ End(V⊗2)

where V = CN (the reason for the factor q1/N will be explained in Remark 4.2).
Then R is a solution of the quantum Yang–Baxter equation

R1,2R1,3R2,3 = R2,3R1,3R1,2

in End(V⊗3) where R1,2 = R ⊗ idV etc. . .

Definition 2.24. The bialgebra Funq(End(V)) is generated by the matrix of symbols
X = (xij) and relations

RL(1)
V L(2)

V = L(2)
V L(1)

V R (2.1)

where L(1)
V := ∑ xij ⊗ Eij ⊗ id and L(2)

V := ∑ xij ⊗ id⊗Eij. This, of course, should
be compared with (1.1).

Its coproduct is defined by

∆(xij) = ∑ xik ⊗ xki.

The bialgebra Funq(GLN) is obtained from Funq(End(V)) by inverting the quantum
determinant

qdet(X) := ∑
σ∈Sn

ql(σ)x1σ(1) . . . xnσ(n)

where l is the length. This bialgebra has an antipode making it an Hopf algebra.

This is called the FRT presentation of Funq(GLN) (referring to the authors
of [FRT90]), and (2.1) is often called the RLL equation.

Definition 2.25. Denote by Repq G the category of Funq(G)-comodules.

There is a bilinear pairing r on Funq(G) which for G = GLN is induced by

r(X ⊗ X) := R ∈ End(V ⊗ V)

and a linear form θ on Funq(G) making it a co-ribbon Hopf algebra, meaning
that Repq G is a ribbon category. By design, the braiding on V ⊗ V for V = CN is
given by P ◦ R where P is the permutation P(u ⊗ v) = v ⊗ u.

We have the following highly non trivial fact, variants of which are due to
Drinfeld [Dri87] and Kazhdan–Lusztig [KL94].

Theorem 2.26. For q generic, O(G) and Funq(G) are isomorphic as coalgebras, i.e.
we have a vector space preserving equivalence of linear categories

Rep G ≃ Repq G.



18 ADRIEN BROCHIER

2.5. Module categories and categories of modules.

Definition 2.27. Let A be a monoidal category. A (strict) right A-module is an LFP
category equipped with a functor in LFPc (i.e. compact preserving)

◁ : M⊠A −→ M
which is associative the obvious way. Left and bi modules are defined in a similar way.

Fundamental examples of that kind of structure arise as follows: let a be an
algebra object in A, i.e. a is equipped with morphisms

µa : a ⊗ a −→ a

and
1 : 1A −→ a

which makes the obvious diagrams expressing that (a, µ, 1) is associative and uni-
tal commute. Likewise, there is a natural notion of, left say, a-module internally
to A: this is an object equipped with an action map µm : a ⊗ m → m making the
obvious diagram commute.

Proposition 2.28. The category a -modA of left a-modules in A is in LFP, and is a right
A-module with action given by

m ◁ x := m ⊗ x
with a-module structure induced by that of m.

Proof. The fundamental observation is that colimits in M = a -modA can be com-
puted in A: let (mi)i∈I be a diagram in M, and let m be the colimit of this
diagram but in A instead. The crucial assumption that we are using is that the
tensor product of A commutes with colimits. Hence, the a-modules structures

a ⊗ mi −→ mi

assemble into a map

colimI(a ⊗ mi) ∼= a ⊗ colimI mi = a ⊗ m −→ m

which turns m into an a-module. Pretty much by construction, this makes m
the colimit of the mi’s in M. Hence, M is cocomplete and the forgetful functor
creates (and in particular preserves) small colimits. This also implies that the
action functor

M×A −→ M
is cocontinuous in each variable.

Just like for ordinary algebras, the forgetful functor has a left adjoint mapping
x ∈ A to the free module a ⊗ x. If m ∈ M, then the action µm : a ⊗ m → m of a is
a map of a-modules. One then shows that m is the coequalizer of the following
diagram:

a ⊗ a ⊗ m a ⊗ m.
ida ⊗µm

µa⊗idm

Now if x is compact in A, then a ⊗ x is compact in M: indeed the free module
functor preserves colimits and has a right adjoint (the forgetful functor) which
also does, hence preserves filtered colimits in particular, so that it follows from
the SAFT.

All in all, any object in M can be written as a small colimit of compact objects,
namely those of the form a ⊗ x for x compact. Hence M ∈ LFP, and the action
functor descends to a colimit preserving functor

A⊠M −→ M.
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Finally, any compact object in M⊠A is a finite colimit of objects of the form
(a ⊗ x) ⊠ y with x, y compact. Since the action functor preserves colimit, the
image of any such object in M is the colimit of objects of the form a ⊗ (x ⊗ y).
Since x ⊗ y is compact by our assumption on A, we conclude that the action
functor preserves compact objects. □

2.6. Relative tensor products and traces. The Deligne–Kelly tensor product can
be extended to modules.

Definition 2.29. Let A be a monoidal category, and M,N be right and left A-modules
respectively. A balanced functor is the data of a bifunctor

B : M×N −→ E
into some target category E , which as usual is cocontinuous and linear in each variable,
and of a natural isomorphism

B(m ◁ x, n) ∼= B(m, x ▷ n)

satisfying certain coherence conditions.
The relative tensor product M ⊠A N of M and N is the universal object among

LFP-categories which are the target of a balanced functor.

Example 2.30. Let M = a -modA and N = A mod- b be the categories of left and
right modules for algebras a, b in A respectively. Then M⊠A N is equivalent to
the category of a-b-bimodules in A.

Slightly more generally, recall that if a is an algebra and m a bimodule, one can
consider the trace, aka cocenter, aka 0th Hochschild homology

Tra(m) := a/[a, m].

In particular, if m, n are right and left a-modules respectively, then m ⊗ n is an
a-bimodule and

Tra(m ⊗ n) = m ⊗a n.
This notion can be categorified as well (see e.g. [FSS14]): let A be monoidal and M
be an A-bimodule. A balanced functor is a functor

B : M −→ E
into some category, together with a natural isomorphism B(a ▷ m) ∼= B(m ◁ a) sat-
isfying certain coherence conditions. Then the trace of M is a category TrA(M)
equipped with a balanced functor M → TrA(M), which is universal for this
property. Again, one can show that this indeed exists, and that for a right mod-
ule M and left module N , then TrA(M⊠N ) ≃ M⊠A N .

3. Factorization homology

3.1. Definition.

Definition 3.1. Let Surf be the strict symmetric monoidal (2, 1)-category defined as
follows:

• objects are compact, oriented surfaces, with or without boundary, including the
empty surface ∅.

• for X, Y ∈ Surf, the groupoid Hom(X, Y) is the fundamental groupoid

Π1(Emb(X, Y))

of the space of smooth oriented embedding of X into Y.
The monoidal structure is given by disjoint union and the unit by ∅.
We let Disc be the full subcategory of Surf whose objects are disjoint unions of the

standard unit disc D2.
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Let
−−→
Confn(D2) be the framed configuration space of points in a disc
−−→
Confn(D2) = {((z1, v1), . . . , (zn, vn)) ∈ (D2 × S1)n|i ̸= j ⇒ zi ̸= zj}

where vi is a unit tangent vector at zi. It is easily seen that the continuous map

−−→
Confn(D2) −→ Emb

(
n⊔

i=1

D2, D2

)
which sends a framed point (zi, vi) to the disc with center zi and such that

the unit vector vi is pointing toward the image of the point (1, 0) ∈ D2 is an
homotopy equivalence4.

1

2 3
7−→

1

2 3

Just like we did for the skein category, we can choose once and for all for each
n a set of n! basepoints for

−−→
Confn along the horizontal axis corresponding to the

possible labelling of a fixed configuration of points by integers 1 . . . n. We let
D̃isc be the full category of Disc where we restrict to the embeddings determined
by those basepoints. For any embedding

⊔n
i=1 D2 ↪→ D2 and any choice of one

of our based configuration of ki framed points on the ith embedded disc, there
is a unique-up-to-homotopy homotopy staying on the horizontal axis from the
images of those configurations in the larger disc, to the ordered configuration of
∑ ki points on the larger disc, shifting the labelling the obvious way. This implies
that composition in D̃isc is well-defined.

2 1

1 2 1 −→ 2 3 1

The inclusion D̃isc ⊂ Disc is an equivalence of symmetric monoidal (2, 1)-
categories. The reason for introducing those objects is the following fundamen-
tal result. As its core it is essentially a “coordinate-free” definition of balanced
braided monoidal categories, or in other words that those are indeed the correct
categorical structures carrying compatible representations of the framed braid
groups π1(

−−→
Confn/Sn). In other words this should be the “correct” definition of

4Slightly more precisely, after fixing an embedding ι : D2 ↪→ D2, precomposing ι with a rotation gives
a map S1 ≃ SO(2) → Emb(D2, D2) which is an homotopy equivalence. This is why an embedding of
⊔nD2 into D2 is determined, up to a contractible space of choices, by the image of the center of each
disc and a unit vector based at it.
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(balanced) braided monoidal category, and the theorem below states that it coin-
cides with the usual axiomatic one. In a slightly different formulation it is due to
Deligne (unpublished), Bezrukavnikov–Finkelberg–Schechtman [BFS06], Salvatore–
Wahl [SW01]. Note that we state the theorem with LFPc as a target since this is the
setting in which we want to do computations later on, but we have a similar
statement for any target.

Observe that the (2, 1)-category of symmetric monoidal functors Disc → LFP
itself has a symmetric monoidal structure given by pointwise multiplication.

Theorem 3.2. Evaluation on D2 induces an equivalence of symmetric monoidal (2, 1)-
categories between

• symmetric monoidal functors

Disc −→ LFPc

• the (2, 1)-category of balanced braided monoidal categories in LFPc, braided monoidal
functors in LFPc and natural isomorphisms of those.

Sketch of proof. Since the inclusion D̃isc ⊂ Disc is an equivalence, we can instead
look at symmetric monoidal functors

D̃isc −→ LFP .

Let A ∈ LFP be the image of D2. That the functor at hand is monoidal implies
that the image of the disjoint union of n discs is A⊠n. In particular ∅ is mapped
to VectC. The configuration

1 2

is mapped to a functor
⊗ : A⊠2 −→ A.

By construction, the configuration

1 2 3

is the image both of ⊗ ◦ (IdA⊠⊗) and of ⊗ ◦ (⊗⊠ IdA) which means that ⊗ is
associative. The unique inclusion of ∅ into D2, i.e. the unique configuration of
zero points inside D2, induces a functor

VectC −→ A
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whose value on C is a compact object 1A which is easily seen to be a unit for ⊗.
Therefore, (A,⊗, 1A) is a strict monoidal category.

Since the functor at hand is symmetric, the configuration

2 1

is mapped to the functor ⊗op defined as the composition

A⊠2 σA,A−−→ A⊠2 ⊗−→ A

where σ is the symmetry of LFP. In other words, this is the opposite multiplica-
tion in A

x ⊗op y = y ⊗ x.

The obvious path between those two configurations switching them in a counter-
clockwise way induces a natural isomorphism

βx,y : x ⊗ y ∼= y ⊗ x

and the path in
−−→
Conf1 which takes our chosen basepoint and makes its unit tan-

gent vector do a full counter clockwise turn induces a natural automorphism θ
of the identity functor of A. All in all we see that we obtain on A the struc-
ture of a balanced braided monoidal category. It is clear that any morphism
and 2-morphisms in D̃isc are obtained by composition and disjoint union/tensor
product of those. What is much less obvious is that we also get all relations,
i.e. that a balanced braided structure on A is sufficient to get such a symmetric
monoidal functor, but this is indeed true. □

We are finally in a position where we can define factorization homology with
coefficients in a balanced braided tensor category.

Theorem 3.3 ([BD04, Lur09, AF15]). Let A be a balanced braided monoidal category seen as
a symmetric monoidal functor

Disc −→ LFP .

There is a universal, canonical extension of A to a symmetric monoidal functor

Disc LFP

Surf

A

∫
(−
)
A

which is characterized by excision, a property explained below. We call the category
∫

S A
“factorization homology of S with coefficients in A”.
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Remark 3.4. As the notation suggests,
∫

S A is obtained by somehow integrating
over all embeddings of a bunch of discs into S. Formally, it is the (2, 1)-colimit
over the image through the functor associated with A of the slice category Disc ↓
S.

3.2. Excision. By construction, the image
∫

D2 A of the standard disc is A as a
balanced braided monoidal category. Functoriality w.r.t smooth oriented embed-
dings implies that if P is a compact 1-dimensional manifold, then

∫
P A :=

∫
P×I A

has a monoidal structure5. Given a collar, i.e. an embedding P × I ↪→ S restrict-
ing to P × {0} ↪→ ∂S (resp. P × {1} ↪→ ∂S),

∫
S A becomes a left (resp. right)∫

P×I A-module. With these structure at hand, the following fundamental prop-
erty of factorization homology, stating that it is a TFT in a very strong sense, is
the key to explicit computations:

Theorem 3.5 (Excision). Let S be a surface with “right” and “left” collars P × I respec-
tively, and let SP be the surface obtained by gluing along P (and smoothing if necessary).
Then the functor ∫

S
A −→

∫
SP

A

induced by the tautological embedding S ↪→ SP descends to an equivalence

Tr∫
P A

(∫
S
A
)
≃
∫

SP

A.

In particular, if S = S2 ⊔ S2 and if the right (resp. left) collar belong to S1 (resp. S2) then∫
S
A ≃

∫
S1

A ⊠∫
P A

∫
S2

A.

3.3. The quantum structure sheaf. A very important feature of factorization ho-
mology is that it produces for any surface not just category but a pointed category:
since it is functorial with respect to embeddings, the unique inclusion ∅ ↪→ S of
the empty surface into a surface S induces a functor

DS : VectC −→
∫

S
A.

Indeed, since factorization homology is monoidal, the image of ∅, the unit in Surf,
is the unit in LFP which is VectC. Since DS is linear it is completely determined
by the image of C ∈ VectC.

Definition 3.6. Let OS be the object DS(C) ∈
∫

S A. We call OS the distinguished
object, or the quantum structure sheaf.

3.4. Interlude: quantization of shifted Poisson structures. There is a general
notion of n-shifted Poisson structure [PTVV13, CPT+17] which à priori requires the
language of derived stack, although it makes sense for ordinary stacks for n =
0, 1, 2. Very informally, n-shifted Poisson structures on X are expected to arise as
quasi-classical limits of deformations of QCoh(X) as an En-category. Note that
an E0-category means a pointed category, i.e. a pair (C, x ∈ C). In that case one
should think of x as a deformation of the structure sheaf of X, so that End(x) is
a deformation-quantization in the good ol’ usual way of the Poisson algebra of
global function on X.

On the one hand, given an n-shifted Poisson stack X, one can consider the
Poisson sigma model Map(−, X). One of the main theorems of loc. cit. states that

5This structure is well-defined up to equivalence. To fix a particular “model” for it, in particular if we
want a strict version, we’d need to make some choices. This can be done in exactly the same way as
we did for the disc.
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if M is an oriented k-dimensional manifold, then the mapping stack Map(M, X)
inherits a canonical n − k shifted Poisson structure. On the other hand, if A is an
En-category quantizing that structure on X, then

∫
M A is an En−k-category. The

general expectation, which to the best of my knowledge hasn’t be made precise
yet, is that the latter should automatically be a quantization of the former.

In our setting, the classifying stack BG has a 2-shifted Poisson structure, of
which Repq G is a deformation. The character stack of M can be identified with
Map(M, BG) so that if dim M = 2 we get a 0, i.e. ordinary, Poisson structure,
which is the stacky version of the Atiyah–Bott–Goldman Poisson structure. All in
all, if S is a surface then

∫
S Repq G ought to produce a canonical quantization of

Ch(S) in the direction of that Poisson structure.

3.5. Extension of the Reshetikhin–Turaev functor to surfaces.

Definition 3.7. let A be ribbon and let TA(S) be the category whose:
• objects are finite configuration of framed points on S, labelled by pairs (x, ϵ) of a

compact object x ∈ A and ϵ ∈ {+,−}
• morphisms are linear combinations of isotopy classes of framed oriented ribbon

graphs embedded in S × I with strands labelled by compact objects of A and
vertices labelled by morphisms as in Theorem 2.23.

Let
−−→
Confn(S) := {((z1, v1), . . . , (zn, vn)), (zi, vi) ∈ US, i ̸= j ⇒ zi ̸= zj}

be the framed configuration space of S, where US is the unit bundle of S. Again
the map

−−→
Confn(S) → Emb

(
n⊔

i=1

D2, S

)
is an homotopy equivalence. Hence, every framed configuration C on S induces,
by universal property of factorization homology, a functor

FC : A⊠n −→
∫

S
A.

Further, every labelling of that configuration by arbitrary objects x1, . . . , xn of A
determines an object in

∫
S A, namely the image of x1 ⊠ . . . ⊠ xn through that

functor. In the particular case where the configuration at hand is image of one
of the one we fixed through an embedding ι : D2 ↪→ S, then by construction it
factors through the tensor product of A:

FC(x1 ⊠ . . . ⊠ xn) = Fι(x1 ⊗ . . . ⊗ xn).

Every framed braid in S, i.e. any path in the configuration space between two
configurations C, C′ such that the top and bottom of each strand are labelled by
the same object induces an isomorphism

FC(x1 ⊠ . . . ⊠ xn) ∼= FC′(x1 ⊠ . . . ⊠ xn)

in
∫

S A. In the category TA(S), we also have morphisms which are image in the
embedding D2 × I ↪→ S × I induced by any choice of ι of a morphism in TA (note
that this include in particular cups and caps). It’s clear that morphisms in TA(S)
are in fact generated by those together with the paths in the configuration space
that we considered above. Hence we’ve sketched a proof of the following:

Theorem 3.8. The Reshetikhin–Turaev functor has a canonical extension

RTA : TA(S) −→
∫

S
A.
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4. The quantum skein category

4.1. Quantum Schur–Weyl duality. Let V = Cn ∈ Repq GLN and let Tn be the al-
gebra whose elements are formal linear combinations of framed oriented tangles,
oriented downwards, with n inputs and n outputs where each point is labelled by
a copy Vi of V. Since Repq GLN is ribbon, the Reshetikhin–Turaev functor induces
an algebra map

ev : Tn −→ EndRepq GLN (V
⊗n).

Let σ ∈ Sn and let βσ be the unique braid in Tn such that:

(a) there is a strand connecting the input labelled i with the output labelled
σ(i)

(b) if i < j then the strand starting at i always goes “above” the strand starting
at j if and whenever they cross

(c) it has the smallest number of crossings among braids satisfying the two
conditions above.

Theorem 4.1 ([Jim86]). The map ev is surjective, its kernel is empty if n ≤ N, and is
otherwise generated by the following skein relations:

(a) The “quantum dimension” relation

=
qN/2 − q−N/2

q − q−1 · ,

(b) the q-antisymmetrizer relation

∑
σ∈SN+1

q−l(σ)ϵ(σ) βσ = 0

where again l is the length and ϵ the sign
(c) the HOMFLY-Hecke relation

− = (q − q−1)

Remark 4.2. The reason for the factor q1/N in the definition of the R-matrix is that
it makes the HOMFLY-Hecke relation independent of N.

4.2. The skein category. Let S be a compact oriented surface and let T (S) be the
category whose objects are finite configurations of framed points on S labelled
by {+,−} and morphisms are formal linear combinations of framed oriented
tangles in S × I.

Definition 4.3. The quantum skein category Skq,N(S) is the quotient of T (S) by the
skein relations (a), (b) and (c).

Theorem 4.4. The generalized Reshetikhin–Turaev functor induces a fully faithful func-
tor

Skq,N(S) −→
∫

S
Repq GLN .
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4.3. The skein algebra and the Goldman bracket.

Definition 4.5. The (GLN −) skein algebra of S is the algebra of endomorphism in
Skq,N(S) of the empty configuration. Equivalently, its elements are formal linear combi-
nations of framed oriented links in S × I modulo the skein relations.

Theorem 4.6 ([Sik08, Tur91]). The skein algebra is a quantization of the algebra of functions
on the GLN character variety of S in the direction of the Atiyah–Bott-Goldman Poisson
bracket.

Sketch of proof. We use the word “quantization” in a loose sense, the non-trivial
part of that statement is that the skein algebra is in fact a flat deformation of the
algebra of functions on the character variety. Here we just want to highlight how
the HOMFLY-Hecke relation is related to the Goldman bracket.

Setting q = exp(ℏ) and expanding the last skein relation we get

− = ℏ + O(ℏ2).

Just like for ordinary links in R3, a link L in S× I can be represented by a diagram
drawn on S by choosing a representative of L in a sufficiently generic position,
looking at its image on S through the projection π along I and labelling the
intersection points as being either and under or an overcrossing. If L1, L2 are
links in generic position, by definition one can go from the diagram of the product
L1L2 to the diagram of L2L1 by flipping every crossing at the intersection of the
diagrams of L1 and L2.

□

5. Explicit computation

From now on, we assume unless otherwise specified that A is braided, bal-
anced, and rigid. To be on the safe side, we also assume it’s abelian although this
condition can often be weakened. The following is the first main result of those
notes:

Theorem 5.1 ([BZBJ18a]). Let S be a surface with non-empty boundary, together with the
choice of an interval on one of the components of ∂S. To this data is canonically associated
an algebra aS ∈ A, and there is an equivalence of6 A-modules∫

S
A ≃ as -modA .

Under this identification, the functor

A −→
∫

S
A

induced by the inclusion of a disc near the marked interval on the boundary of S is given
by the free module functor x 7→ aS ⊗ x.

The rest of this section is devoted to an explicit description of the algebras
as, and to explain what happens for closed surfaces. More precisely, the alge-
bra aS itself is canonical (uniquely defined up to a unique isomorphism), and is
non-canonically isomorphic to an explicitly described algebra, the isomorphism
depending, roughly speaking, on a choice of free generators for π1(S).

The main motivation for that description is the following, which also connects
this to the results in the first section:

6left or right, depending on the orientation of the marked interval
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Theorem 5.2 (Ben-Zvi–Francis–Nadler). Let A = Rep G. Then there is an equiva-
lence of categories ∫

S
A ≃ QCoh(Ch(S)).

5.1. The key ingredient: the braided dual of A. In this section we introduce a
certain canonical Hopf algebra object OA in a rigid braided tensor category A.
It should be thought of as an abstraction of the universal property of O(G) as
well as of its Peter–Weyl description, and appears in the literature under various
names: the braided dual or braided group of A [Maj95, Maj93], the reflection equation
algebra [DKM03] and the loop algebra [Ale93]. We first make the following

Definition 5.3. Let A be a braided tensor category with braiding β, and let a, b be algebra
objects in A with multiplications µa, µb respectively. The braided tensor product a⊗̃b is
an algebra in A which as an object is a ⊗ b and with multiplication given by

a ⊗ a ⊗ b ⊗ b
ida ⊗βa,b⊗idb−−−−−−−→ a ⊗ b ⊗ a ⊗ b

µa⊗µb−−−→ a ⊗ b.

If c, d are coalgebras, then their braided tensor product is defined similarly. A bialgebra
in A is an object h ∈ A which is both an algebra and a coalgebra, and such that the
multiplication is a map of coalgebras h⊗̃h → h (equivalently, the coproduct is a map of
algebra h → h⊗̃h ).

Roughly speaking, we want to construct the universal coalgebra which coacts
on any object in A. More precisely, we want an object OA in A, and maps

∆x : x −→ OA ⊗ x

which are natural in x in the sense that for every morphism

ϕ : x −→ y

the following diagram commutes

x OA ⊗ x

y OA ⊗ y

∆x

ϕ idOA ⊗ϕ

∆y

and we want OA to be the universal such. In other words, we want OA to
represent the functor

A −→ VectC

c 7−→ Nat(IdA, IdA ⊗c).

Note that we are not requiring à priori OA to be a coalgebra, we actually get
this for free from the naturality: the coproduct of OA will simply be given by
∆OA . Assuming such an object exists, its square OA

⊗2 likewise represents the
functor

A⊠2 −→ VectC

c ⊠ d 7−→ Nat(IdA, IdA ⊗c ⊗ d).

Moreover, we want a multiplication on OA, inducing a tensor product on OA-
comodules extending that of A in the sense that the tensor product of x, y with
their canonical comodule structure, ought to be x ⊗ y with its canonical comodule
structure. One can use the braiding to turn x⊗ y into a comodule over the braided
tensor product coalgebra OA⊗̃OA, and we want a multiplication µ on OA which
makes the following diagram commutes:
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x ⊗ y OA⊗̃OA ⊗ x ⊗ y

x ⊗ y OA ⊗ x ⊗ y

∆̃x⊗y

idx⊗y µ⊗id x⊗y
∆x⊗y

Since A is in LFP we can restrict to compact objects for the universal property
of OA, and since A is rigid, the map ∆x can be dualized into a map

ix : x ⊗ x∗ −→ OA.

Naturality then translates to the fact that for every map ϕ : y → x the following
diagram should commutes

y ⊗ x∗ y ⊗ y∗

x ⊗ x∗ OA

ϕ∗

ϕ iy
ix

and OA should be universal for this property. The advantage of this description is
that we have moved the “variables” all on one side, so that it characterizes maps
out of OA which is typically what a colimit does. Indeed the above universal
property is a particular case of what’s called a coend:∫ Ac

x ⊗ x∗.

This object has a concrete description as the coequalizer of the diagram

⊕
ϕ:y→x
x,y∈I

y ⊗ x∗
⊕
x∈I

x ⊗ x∗
id⊗ϕ∗

ϕ⊗id

where I is any set of compact objects generating A. This is well-defined since A
is cocomplete, and we get the following “Peter-Weyl description” of OA and of
its bialgebra structure:

Theorem 5.4. Such an object exists, and is given by the “canonical coend”

OA :=
∫ Ac

x ⊗ x∗.

The object OA has a canonical structure of an Hopf algebra in A. The comultiplication is
induced by the maps

x ⊗ x∗
idx ⊗ coevx id∗

x−−−−−−−−→ (x ⊗ x∗)⊗ (x ⊗ x∗) ix⊗ix−−−→ OA ⊗OA

and the multiplication by

(x ⊗ x∗)⊗ (y ⊗ y∗)
βx∗ ,y∗ βx∗ ,y−−−−−−→ x ⊗ y ⊗ y∗ ⊗ x∗ ∼= (x ⊗ y)⊗ (x ⊗ y)∗

ix⊗y−−→ OA.

The unit is given by the map i1A : 1A ≃ 1A ⊗ 1∗A → OA and the counit is induced by
the evaluations x ⊗ x∗ → 1A.

By construction every object is canonically an OA-comodule, and if x is com-
pact then the coaction is the composition

∆x : x id⊗ coevx−−−−−→ x ⊗ x∗ ⊗ x ix⊗id−−−→ x ⊗OA.
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This induces an automorphism Lx of the free module functor OA ⊗ x. Explic-
itly,

Lx : OA ⊗ x
idOA ⊗∆x
−−−−−→ OA ⊗OA ⊗ x

µOA⊗idx
−−−−−→ OA ⊗ x.

Theorem 5.5. Let (H, r) be a co-quasitriangular Hopf algebra and let A = h -comod.
Then as an object in A, OA = H equipped with the adjoint coaction, its coproduct is the
one of H, but the multiplication is twisted by r.

We will use the notation Oq(G) := ORepq G. As coalgebras we thus have
Oq(G) = Funq(G) but the multiplication is different. Indeed, observe that the

operator L(2)
V of Definition 2.24 doesn’t quite make sense internally to A since

it involves the flip of 2-tensors in vector spaces. One needs to use the braiding
instead, i.e. we set

L̃(1)
V = LV ⊗ id L̃(2)

V = β−1
V,V(LV ⊗ id)βV,V .

Then, the multiplication in Oq(G) is characterized by the following relation:

L̃(1)
V L̃(2)

W = L̃(2)
W L̃(1)

V

Remark 5.6. Setting q = exp(ℏ) for a formal variable ℏ, we get an algebra Oℏ(G)
which is a flat deformation of O(G) in the direction of a certain Poisson structure
on G discovered by Semenov-Tian-Shansky. This induces a Poisson structure on
the categorical quotient

G//G ∼= Ch(S1 × I)

which coincides with the Atiyah–Bott–Goldman Poisson structure on the right
hand side7 . Let g be the Lie algebra of G and let Ôℏ(g

∗) be the subalgebra
of U(g)[[ℏ]] (topologically) generated by ℏg: this is a quantization of the linear
Poisson structure on the formal neighborhood ĝ∗ of 0 in g∗ induced by the Lie
bracket of g. It follows from ? that one can construct an algebra map

Oℏ(G) −→ Ôℏ(g
∗)

which quantizes the so-called linearization map, a Poisson morphism

ĝ∗ −→ G.

5.2. Factorization homology of the annulus.

Theorem 5.7 ([BZBJ18a]). The algebra aS1×I is canonically isomorphic to OA.

In particular, for every object x there is an action of the braid group of S1 × I
on the object OA ⊗ x⊗n which maps the generator of π1(S1 × I) based at the
“leftmost” point of any of our chosen configuration in the image of D2, to the
operator Lx ⊗ id⊗n−1

x .

7This might sound like a vacuous statement since the Atiyah–Bott–Goldman Poisson structure on
Ch(S1 × I) turns out to be zero, as is easily seen from Goldman’s formula, but this also induces the
correct Poisson structure on the character stack.
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5.3. Quantum differential operators and the punctured torus. Let c be the fol-
lowing isomorphism from O⊗2

A to itself:

Note that this makes sense since, using the coend formula, each copy of OA
has two “slots” in which one can plug the braiding.

Definition 5.8. The algebra of quantum differential operator DA is defined as follows:
as an object it is O⊗2

A , and the multiplication is defined by

OA ⊗OA ⊗OA ⊗OA
id⊗c⊗id−−−−−→ OA ⊗OA ⊗OA ⊗OA

m⊗m−−−→ OA ⊗OA

Theorem 5.9 ([BZBJ18a]). There is an algebra isomorphism aT2\D2 ≃ DA.

Again, variants of this algebra (in the case where A is the category of repre-
sentations of an Hopf algebra) appear in the literature under various names: for
quantum groups it’s closely related to the Heisenberg double [STS94] and coincides
withe the handle algebra of [Ale93]. We set Dq(G) := DRepq G.

Remark 5.10. The name is justified by the following fact: the algebra D(G) of
differential operators on G is isomorphic to the semi-direct product

D(G) = O(G)⋊U(g)

where U(g) is identified with, say, left invariant differential operators on G. Set-
ting q = exp(ℏ), the subalgebra

Oℏ(T∗G) = O(G)⋊Oℏ(g
∗) ⊂ D(G)[[ℏ]]

is a quantization of the symplectic structure on the formal completion of T∗G ≃
G × g∗ along the zero section. The map from Remark 5.6 extends to an algebra
map

Dℏ(G) −→ D(G)[[ℏ]]
which quantizes a (formal) Poisson morphism

T∗G −→ G × G

where the Poisson structure on G × G was also introduced by Semenov–Tian–
Shansky (the Heisenberg double). Hence this Poisson structure should be thought
of as a multiplicative version of the cotangent bundle of G, and again it induces
the Atiyah–Bott-Goldman Poisson structure on the character variety/stack of a
punctured torus

Ch(T2\D2) ∼= (G × G)/G.

5.4. Punctured surfaces.

Theorem 5.11 ([BZBJ18a]). The algebra aSg,n+1 is isomorphic to D⊗̃g
A ⊗̃O⊗̃n

A where ⊗̃ is
the braided tensor product of algebras.

Remark 5.12. This shows in particular that the GLN skein algebra introduced in
Section 4 is isomorphic to the subalgebra of invariants

HomRepq G(C,D⊗̃g
A ⊗̃O⊗̃n

A ).

.
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5.5. Closed surfaces and quantum Hamiltonian reduction. We know from ab-
stract non-sense that

∫
S1×I A should be monoidal. Since OA is a bialgebra, its

category of modules is indeed monoidal, but it turns out this is not the correct
monoidal structure8.

Indeed, we also want the free module functor to be monoidal, i.e. the monoidal
structure ⊗cyl we are looking for should satisfy

(OA ⊗ x)⊗cyl (OA ⊗ y) ∼= OA ⊗ (x ⊗ y).

So it seems what we want is something like the relative tensor product over OA.
In order to make sense of this, we make the following:

Definition 5.13. Let A be a monoidal category, and a an algebra in A with multiplica-
tion µ. A commutative structure on a is a natural (in x) isomorphism

ηx : a ⊗ x −→ x ⊗ a

such that

ηx⊗y = ηy ◦ ηx µ ◦ ηa = µ

and such that η1A = id1A .

Remark 5.14. If B is braided with braiding β, an algebra a ∈ B is called braided
commutative if µ ◦ βa,a = µ. In particular, a commutative structure on a is the
same as a lift of a into a braided commutative algebra in the Drinfeld center
B = Z(A).

Proposition 5.15. Let a be an algebra in A with a commutative structure η. Then
a -modA is monoidal, with tensor product given by the tensor product over a, using η
to turn left modules into right ones. Formally, the tensor product of modules m, n with
right action µm, µn respectively, is the coequalizer of

m ⊗ a ⊗ n m ⊗ n.
µm

µn◦ηn

Proposition 5.16 (Majid). The algebra OA has a canonical commutative structure given
by the “field goal transform”

ηm =

OA m

.

This makes OA -modA into a monoidal category with tensor product ⊗OA .

Definition 5.17 ([Saf19]). Let (a, µ) be an algebra in A. A quantum moment map is
an algebra map ρ : OA −→ a which is central, i.e. such that the following diagram
commutes:

8The category of OA-module with that monoidal structure is, in fact, equivalent to the Drinfeld center
of A.
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OA ⊗ a a ⊗ a

a

a ⊗OA a ⊗ a

ρ⊗ida

ηa

µ

ida ⊗ρ

µ

Unpacking the definitions, one gets the following

Proposition 5.18. There is an equivalence of categories between
(a) algebras in the monoidal category OA -modA
(b) pairs of an algebra a in A and of a quantum moment map OA → a.

Definition 5.19. Let a be an algebra with a quantum moment map ρ. A left a-module
m is strongly equivariant if the right OA-module structure on m obtained by pulling
back along ρ and applying the field goal transform, is trivial.

Remark 5.20. The counit ϵ : OA → 1A is trivially a quantum moment map, hence
1A is an algebra in OA -modA. Then a strongly equivariant a-module is equiva-
lently an a − 1A-bimodule in OA -modA.

Theorem 5.21 ([BZBJ18b]). Let S = Sg,1. There exists a quantum moment map

ρ : OA −→ aS

such that:
(a) The functor ∫

S1×I
A −→

∫
S
A

induced by the inclusion of an annulus around the boundary component of S, is
identified with the functor if induction along ρ, m 7→ as ⊗OA m.

(b) There is an equivalence of categories between
∫

Sg
A and the category of strongly

equivariant aSg,1 -modules.

This quantum moment map can be described as follows: let γ be the loop
based at the marked interval on Sg,1 going around the puncture. The formalism
of factorization homology implies this induces an automorphism of the free aSg,1

module aSg,1 ⊗ x for any compact x. By the free/forget adjunction this is the same
as a map x → aSg,1 ⊗ x in A, which can be dualized to a map

x ⊗ x∗ −→ aSg,1 .

The claim is that, by the coend property, those assemble into an algebra map

OA =
∫ Ac

x ⊗ x∗ −→ aSg,1

which is the quantum moment map we were looking for.

Example 5.22. Remember that for A = Rep G, it is still true for a closed surface
S that

∫
S A = QCoh(ChS) is the category of O(RS)-modules in Rep G, but this

relies in the fact that Rep G is symmetric. Still, in that case the theorem above
recover our description of that category: the algebra O(G) is indeed tautologically
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commutative in Rep G, and any algebra map is a moment map, so this is in
particular the case for the algebra map

ρ : O(G) −→ O(RSg,1)

given by “taking the monodromy around the puncture” as in section 1.2. In
that case, the theorem states that

∫
Sg
A is equivalent to the category of O(RSg,1)-

modules in Rep G which becomes trivial after pulling back through ρ. This is
obviously the same as G-equivariant modules over O(RSg,1)/ρ(I) where I is the

augmentation ideal9, which is the same as O(RSg).

Remark 5.23. This is all motivated by the following construction: given a Poisson
variety X with a compatible action of G, a moment map is a G-equivariant Poisson
map X 7→ g∗. This induces a Poisson structure on the quotient µ−1(0)/G. The
fundamental example is a cotangent bundle X = T∗Y of a (smooth) variety Y
equipped with a G-action. This has a distinguished moment map ρ, and we have
an identification

ρ−1(0)/G = T∗(Y/G).

Now, thinking of U(g) as a quantization of g∗, and of the algebra D(Y) of differ-
ential operators as a quantization of T∗Y, the Lie algebra map g → Der(O(Y))
induced by the action of G extends to an algebra map U(g) → D(Y) which quan-
tizes the above moment map. It turns out that U(g) has a canonical commutative
structure as an algebra in Rep G (see [Saf19]), that this map is a quantum moment
map is the sense above, and the category of strongly equivariant D(Y)-module
is then identified with the category of D-modules on the quotient stack Y/G, a
quantization of the cotangent stack T∗(X/G). Thinking again, e.g., as the repre-
sentation variety of a punctured torus, identified with G × G, as a multiplicative
version of T∗G, the map G × G → G is a multiplicative moment map in the sense
of [AMM98, AKSM02] (see also [Saf15]), and the character stack of the closed torus is
obtained by Hamiltonian reduction. Hence, the character stack of T2 is a multi-
plicative version of the cotangent stack T∗(G/G). Accordingly,

∫
T2 Repq G should

be thought of as a category of “strongly equivariant quantum D-modules” on the
stack G/G.

6. Proofs

6.1. Reconstruction for module categories. The goal of this section is to prove
some kind of converse to Proposition ?. Let A be monoidal and M be a right
A-module. Let m ∈ M and consider the functor

actm : A −→ M

given by
actm(x) := m ◁ x.

This functor has a right adjoint, actR
m which in general will not be a morphism

in LFP since it may fail to be cocontinuous.

Definition 6.1. Let m, n ∈ M. We define the internal hom

HomM(m, n) := actR
m(n) ∈ A.

9Here we mean a priori the quotient by the left ideal generated by ρ(I), but here we’re dealing with a
commutative algebra so this ideal is two-sided in that case.
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Remark 6.2. The name is justified by the following observation: let A = H -mod
for an Hopf algebra H. For V, W ∈ A, the vector space HomC(V, W) (here we
really mean all linear maps) is naturally an object in A via the adjoint action

(h · f )(v) := h(2) ▷ f (S(h(1)) ▷ v)

where
∆(h) = ∑ h(1) ⊗ h(2)

is the coproduct and S the antipode. If V is finite dimensional this is just the
module structure on V∗ ⊗ W. A straightforward modification of the tensor-hom
adjunction gives a natural isomorphism

HomH(V ⊗ U, W) ∼= HomH(U, HomC(V, W)).

Hence, as an object in A, HomC(V, W) is the internal hom for the right action of
A on itself by multiplication.

Playing with the adjunction we get composition maps, i.e. morphisms in A for
allm, n, p ∈ M

HomM(m, n)⊗ HomM(n, p) −→ HomM(m, p)

which are associative in the obvious sense.
In particular, HomM(m, m) is an algebra object in A and HomM(m, n) is a left

module over it.
The motivating example for this definition is as follows: let a be an algebra

object in A and let M = a -modA. Regard a as a module over itself, then acta is the
free module functor, hence HomM(a,−) is just the forgetful functor a -modA →
A. In that case we claim the map

HomM(a, a) ∼= a

is in fact an isomorphism of algebra.

Theorem 6.3. Let m ∈ M an object satisfying the following property:
• m is an A-generator: the functor HomM(m,−) is conservative, i.e. for any

morphism
f : n −→ p

such that the induced map

HomM(m, n) → HomM(m, p)

is an isomorphism in A, f is an isomorphism in M
• m is A-tiny (we also say A-compact-projective): the functor HomM(m,−) is

cocontinuous, i.e. is a morphism in LFP,
then the canonical functor

M −→ HomM(m, m) -modA

is an equivalence of A-modules.

Remark 6.4. A faithful functor between abelian categories is automatically conser-
vative, but this is not true in general.

This statement is a generalization of Gabriel’s theorem which states that if C is
an abelian category which is cocomplete and if P ∈ C is compact and projective
and a generator (i.e. in the sense of Definition), then

C ≃ End(P) -mod .

6.2. Reconstruction for monoidal categories.
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