What is... Higher algebra?

Adrien Brochier

November 30, 2017

• "Higher" means "higher dimensional", "higher homotopy groups" or perhaps "higher categorical"..

- "Higher" means "higher dimensional", "higher homotopy groups" or perhaps "higher categorical"..
- For each $n \ge 0$ there is a notion of so-called E_n -algebra (aka algebra over the little n-discs operad) which for n = 1 essentially reduces to usual associative algebras, and which have many multiplications parametrized "locally constantly" by collapsing points in \mathbb{R}^n .

- "Higher" means "higher dimensional", "higher homotopy groups" or perhaps "higher categorical"..
- For each $n \ge 0$ there is a notion of so-called E_n -algebra (aka algebra over the little n-discs operad) which for n = 1 essentially reduces to usual associative algebras, and which have many multiplications parametrized "locally constantly" by collapsing points in \mathbb{R}^n .
- The family $\{E_n\}_{n\geq 0}$ also have a nice inductive structure which gives a more concrete description of E_n -algebras.

- "Higher" means "higher dimensional", "higher homotopy groups" or perhaps "higher categorical"..
- For each $n \ge 0$ there is a notion of so-called E_n -algebra (aka algebra over the little n-discs operad) which for n = 1 essentially reduces to usual associative algebras, and which have many multiplications parametrized "locally constantly" by collapsing points in \mathbb{R}^n .
- The family $\{E_n\}_{n\geq 0}$ also have a nice inductive structure which gives a more concrete description of E_n -algebras.
- Those structures have a close connection with topological field theories, they also organize nicely a variety of interesting and concrete algebraic constructions.

- "Higher" means "higher dimensional", "higher homotopy groups" or perhaps "higher categorical"..
- For each $n \ge 0$ there is a notion of so-called E_n -algebra (aka algebra over the little n-discs operad) which for n = 1 essentially reduces to usual associative algebras, and which have many multiplications parametrized "locally constantly" by collapsing points in \mathbb{R}^n .
- The family $\{E_n\}_{n\geq 0}$ also have a nice inductive structure which gives a more concrete description of E_n -algebras.
- Those structures have a close connection with topological field theories, they also organize nicely a variety of interesting and concrete algebraic constructions.
- If one drops the locally constant property and/or replace \mathbb{R}^n by an arbitrary (structured) manifold X one gets the notion of factorization algebra over X, which is expected to provide a formalization of observables in QFT's. In particular, factorization algebras on Riemann surfaces are close cousins of vertex algebras.

• An E_1 -algebra has an $S^0 = \{\pm 1\}$ worth of multiplications, parametrized by collapsing points on the real line.

- An E_1 -algebra has an $S^0 = \{\pm 1\}$ worth of multiplications, parametrized by collapsing points on the real line.
- Associativity corresponds to a path between the two different ways
 of collapsing 3 points. In vector spaces this gives ordinary algebras,
 but crucially this also makes sense in categories with "higher
 homotopies", i.e. invertible higher morphisms (more precisely
 so-called symmetric monoidal ∞-categories).

- An E_1 -algebra has an $S^0 = \{\pm 1\}$ worth of multiplications, parametrized by collapsing points on the real line.
- Associativity corresponds to a path between the two different ways
 of collapsing 3 points. In vector spaces this gives ordinary algebras,
 but crucially this also makes sense in categories with "higher
 homotopies", i.e. invertible higher morphisms (more precisely
 so-called symmetric monoidal ∞-categories).
- Hence this also encompass up-to-homotopy versions of algebras where associativity becomes a structure rather than a property. Examples are monoidal categories (in Cat with natural isomorphisms) or A_{∞} -algebras (in chain complexes).

- An E_1 -algebra has an $S^0 = \{\pm 1\}$ worth of multiplications, parametrized by collapsing points on the real line.
- Associativity corresponds to a path between the two different ways
 of collapsing 3 points. In vector spaces this gives ordinary algebras,
 but crucially this also makes sense in categories with "higher
 homotopies", i.e. invertible higher morphisms (more precisely
 so-called symmetric monoidal ∞-categories).
- Hence this also encompass up-to-homotopy versions of algebras where associativity becomes a structure rather than a property. Examples are monoidal categories (in Cat with natural isomorphisms) or A_{∞} -algebras (in chain complexes).
- More generally we can talk about E_1 -algebras in any E_1 /monoidal ∞ -category: this is an instance of the so-called microcosm principle.

November 30, 2017

• Analogy: groups arises as π_1 of pointed spaces (X, x), or equivalently as π_0 of based loop spaces $\Omega_x X$ which are E_1 -algebras.

- Analogy: groups arises as π_1 of pointed spaces (X, x), or equivalently as π_0 of based loop spaces $\Omega_x X$ which are E_1 -algebras.
- Every group arises this way by taking the classifying space.

- Analogy: groups arises as π_1 of pointed spaces (X, x), or equivalently as π_0 of based loop spaces $\Omega_x X$ which are E_1 -algebras.
- Every group arises this way by taking the classifying space.
- Similarly, if $(C, x \in C)$ is a pointed ordinary or ∞ -category, then its "based loop space"

$$\Omega_x \mathcal{C} := \operatorname{End}_{\mathcal{C}}(x)$$

is an E_1 -algebra and

$$\pi_1(\mathcal{C},x) = \pi_0(\Omega_x\mathcal{C}) := \mathsf{End}_{\mathcal{C}}(x)/\sim$$

is an ordinary algebra.

- Analogy: groups arises as π_1 of pointed spaces (X, x), or equivalently as π_0 of based loop spaces $\Omega_x X$ which are E_1 -algebras.
- Every group arises this way by taking the classifying space.
- Similarly, if $(C, x \in C)$ is a pointed ordinary or ∞ -category, then its "based loop space"

$$\Omega_{\mathsf{x}}\mathcal{C} := \mathsf{End}_{\mathcal{C}}(\mathsf{x})$$

is an E_1 -algebra and

$$\pi_1(\mathcal{C},x) = \pi_0(\Omega_x\mathcal{C}) := \mathsf{End}_{\mathcal{C}}(x)/\sim$$

is an ordinary algebra.

 Conversly, every (ordinary or up-to-homotopy) algebra arise this way from (A-mod, A).

What is an E_n -algebra ?

• An E_n -algebra has an S^{n-1} worth of multiplications, parametrized by collapsing points in \mathbb{R}^n .

What is an E_n -algebra ?

- An E_n -algebra has an S^{n-1} worth of multiplications, parametrized by collapsing points in \mathbb{R}^n .
- If $n \ge 2$ the configuration space is connected, so all those multiplications are isomorphic. Hence to get something non-trivial we need ∞ categories to keep track of those isomorphisms.

What is an E_n -algebra ?

- An E_n -algebra has an S^{n-1} worth of multiplications, parametrized by collapsing points in \mathbb{R}^n .
- If $n \ge 2$ the configuration space is connected, so all those multiplications are isomorphic. Hence to get something non-trivial we need ∞ categories to keep track of those isomorphisms.
- For familiar examples, in vector spaces E_n -algebras for $n \geq 2$ are just commutative algebras, while E_2 -algebras in Cat are braided monoidal categories.

• Fun fact: if A is an (ordinary) algebra such that the multiplication $m: A^{\otimes 2} \to A$ is an algebra morphism, then A is commutative, i.e. commutative algebras are Alg(Alg(vect)).

- Fun fact: if A is an (ordinary) algebra such that the multiplication $m: A^{\otimes 2} \to A$ is an algebra morphism, then A is commutative, i.e. commutative algebras are Alg(Alg(vect)).
- Applications:

- Fun fact: if A is an (ordinary) algebra such that the multiplication $m: A^{\otimes 2} \to A$ is an algebra morphism, then A is commutative, i.e. commutative algebras are Alg(Alg(vect)).
- Applications:
 - π_2 's are abelian groups

- Fun fact: if A is an (ordinary) algebra such that the multiplication
 m: A^{⊗2} → A is an algebra morphism, then A is commutative, i.e.
 commutative algebras are Alg(Alg(vect)).
- Applications:
 - π_2 's are abelian groups
 - More generally, if $\mathcal C$ is an (ordinary) monoidal category, then $\operatorname{End}_{\mathcal C}(1_{\mathcal C})$ is a commutative algebra.

- Fun fact: if A is an (ordinary) algebra such that the multiplication $m: A^{\otimes 2} \to A$ is an algebra morphism, then A is commutative, i.e. commutative algebras are Alg(Alg(vect)).
- Applications:
 - π_2 's are abelian groups
 - More generally, if $\mathcal C$ is an (ordinary) monoidal category, then $\operatorname{End}_{\mathcal C}(1_{\mathcal C})$ is a commutative algebra.
 - In particular, if A is any algebra, A-bimod is monoidal with unit A, so End_{A-bimod}(A) is commutative: this is the center of A.

- Fun fact: if A is an (ordinary) algebra such that the multiplication $m: A^{\otimes 2} \to A$ is an algebra morphism, then A is commutative, i.e. commutative algebras are Alg(Alg(vect)).
- Applications:
 - π_2 's are abelian groups
 - More generally, if $\mathcal C$ is an (ordinary) monoidal category, then $\operatorname{End}_{\mathcal C}(1_{\mathcal C})$ is a commutative algebra.
 - In particular, if A is any algebra, A-bimod is monoidal with unit A, so End_{A-bimod}(A) is commutative: this is the center of A.
 - The functor Alg(vect) → Cat given by A → A-mod is monoidal, hence send algebras to algebras, so if A is commutative, A-mod is a monoidal category.

• If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:

November 30, 2017

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are E_2 -algebras in Cat.

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are *E*₂-algebras in Cat.
 - By the microcosm principle we can thus consider E₂-algebras in those: those are braided commutative algebras.

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are E_2 -algebras in Cat.
 - By the microcosm principle we can thus consider E₂-algebras in those: those are braided commutative algebras.
 - ullet If ${\mathcal C}$ is a monoidal category, then $\operatorname{End}_{\mathcal C}(1_{\mathcal C})$ is an E_2 -algebra.

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are E_2 -algebras in Cat.
 - By the microcosm principle we can thus consider E₂-algebras in those: those are braided commutative algebras.
 - \bullet If ${\mathcal C}$ is a monoidal category, then ${\sf End}_{\mathcal C}(1_{\mathcal C})$ is an ${\it E}_2\text{-algebra}.$
 - In particular, if A is any algebra in vect (or chain complexes),
 A-bimod is monoidal with unit A, so the derived End_{A-bimod}(A) is an E₂-algebra: this is Hochschild cohomology!

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are *E*₂-algebras in Cat.
 - By the microcosm principle we can thus consider E₂-algebras in those: those are braided commutative algebras.
 - \bullet If ${\mathcal C}$ is a monoidal category, then ${\sf End}_{\mathcal C}(1_{\mathcal C})$ is an ${\it E}_2\text{-algebra}.$
 - In particular, if A is any algebra in vect (or chain complexes),
 A-bimod is monoidal with unit A, so the derived End_{A-bimod}(A) is an E₂-algebra: this is Hochschild cohomology!
 - Similarly if $\mathcal C$ is a monoidal (i.e. E_1) category, its center $\operatorname{End}_{\mathcal C\operatorname{-bimod}}(\mathcal C)$ is E_2 , i.e. braided: this is the Drinfeld center.

November 30, 2017

- If we replace Vect by some symmetric monoidal ∞ category \mathcal{S} , then $Alg(Alg(\mathcal{S}))$ are exactly E_2 -algebras. Crucially in this setting "being an algebra morphism" is a structure, not a property, hence so is being an E_2 -algebra (think of monoidal functors). So:
 - Double loop spaces are E_2 -algebras.
 - Braided monoidal categories are *E*₂-algebras in Cat.
 - By the microcosm principle we can thus consider E₂-algebras in those: those are braided commutative algebras.
 - \bullet If ${\mathcal C}$ is a monoidal category, then ${\sf End}_{\mathcal C}(1_{\mathcal C})$ is an ${\it E}_2\text{-algebra}.$
 - In particular, if A is any algebra in vect (or chain complexes),
 A-bimod is monoidal with unit A, so the derived End_{A-bimod}(A) is an E₂-algebra: this is Hochschild cohomology!
 - Similarly if C is a monoidal (i.e. E₁) category, its center End_{C-bimod}(C) is E₂, i.e. braided: this is the Drinfeld center.
 - For the same reason as before, modules over an E₂-algebra is a monoidal category.

• The same pattern extends to all n: E_n -algebras are E_{n-1} -algebras in algebras.

- The same pattern extends to all n: E_n -algebras are E_{n-1} -algebras in algebras.
- Hence ordinary modules over an E_n -algebras is an E_{n-1} -category.

- The same pattern extends to all n: E_n -algebras are E_{n-1} -algebras in algebras.
- Hence ordinary modules over an E_n -algebras is an E_{n-1} -category.
- They also have a category of so-called operadic modules which is an E_n -category.

- The same pattern extends to all n: E_n -algebras are E_{n-1} -algebras in algebras.
- Hence ordinary modules over an E_n -algebras is an E_{n-1} -category.
- They also have a category of so-called operadic modules which is an E_n -category.
- More generally, playing with the identitification $E_n = E_{n-k}$ in E_k one gets a whole zoo of various notions of modules, corresponding to "codimension k defects".

- The same pattern extends to all n: E_n -algebras are E_{n-1} -algebras in algebras.
- Hence ordinary modules over an E_n -algebras is an E_{n-1} -category.
- They also have a category of so-called operadic modules which is an E_n -category.
- More generally, playing with the identitification $E_n = E_{n-k}$ in E_k one gets a whole zoo of various notions of modules, corresponding to "codimension k defects".
- Every E_n -algebra have a center which an E_{n+1} -algebra.

• Monoidal categories also arise as H-mod for an Hopf algebra H.

- ullet Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee} := \operatorname{End}_H(\mathbb{K})$ is an E_2 -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee}:=\operatorname{End}_{H}(\mathbb{K})$ is an E_{2} -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

as monoidal categories.

• A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee}:=\operatorname{End}_{H}(\mathbb{K})$ is an E_{2} -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.
 - Quasi-triangular Hopf algebras gives E_3 -algebras.

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee} := \operatorname{End}_{H}(\mathbb{K})$ is an E_2 -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.
 - Quasi-triangular Hopf algebras gives E_3 -algebras.
 - "Codimension 1 modules" are comodule-algebras.

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee} := \operatorname{End}_H(\mathbb{K})$ is an E_2 -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.
 - Quasi-triangular Hopf algebras gives E_3 -algebras.
 - "Codimension 1 modules" are comodule-algebras.
 - Operadic modules correspond to Hopf bimodules, which are equivalent to Yetter-Drinfeld modules.

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee} := \operatorname{End}_{H}(\mathbb{K})$ is an E_2 -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.
 - Quasi-triangular Hopf algebras gives E_3 -algebras.
 - "Codimension 1 modules" are comodule-algebras.
 - Operadic modules correspond to Hopf bimodules, which are equivalent to Yetter–Drinfeld modules.
 - The Drinfeld double of H is associated to the E_3 -center of H^{\vee} which is a variant of the Gerstenhaber–Schack complex.

- Monoidal categories also arise as H-mod for an Hopf algebra H.
- This is in fact a particular case: taken in an appropriate derived sense $H^{\vee} := \operatorname{End}_{H}(\mathbb{K})$ is an E_2 -algebra and

$$H\operatorname{-mod}\cong H^{\vee}\operatorname{-mod}$$

- A lot of the theory of Hopf algebras can be naturally interpreted in this language, e.g.
 - Quasi-triangular Hopf algebras gives E_3 -algebras.
 - "Codimension 1 modules" are comodule-algebras.
 - Operadic modules correspond to Hopf bimodules, which are equivalent to Yetter–Drinfeld modules.
 - The Drinfeld double of H is associated to the E_3 -center of H^\vee which is a variant of the Gerstenhaber–Schack complex.
 - . . .

